K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

- Ta có : \(x^2-\left(m-2\right)x-3=0\)

- Ta thấy : \(ac=1\left(-3\right)=-3< 0\)

=> Nên phương trình có hai nghiệm phân biệt .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-3\end{matrix}\right.\)

- Ta có : \(\sqrt{x^2_1+2020}-x_1=\sqrt{x^2_2+2020}+x_2\)

=> \(\sqrt{x^2_1+2020}-\sqrt{x^2_2+2020}=x_1+x_2\)

=> \(x^2_1+2020+x_2^2+2020-2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}=x^2_1+x^2_2+2x_1x_2\)

=> \(4046=2\sqrt{\left(x^2_1+2020\right)\left(x^2_2+2020\right)}\)

=> \(4092529=\left(x^2_1+2020\right)\left(x^2_2+2020\right)\)

=> \(x^2_1x^2_2+2020x_1^2+2020x^2_2+4080400=4092528\)

=> \(2020x_1^2+2020x^2_2=12120\)

=> \(x^2_1+x^2_2=6\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

=> \(m^2-4m+4-2\left(-3\right)=6\)

=> \(m^2-4m+4=0\)

=> \(m=2\)

Vậy ....

NV
19 tháng 7 2020

\(x_1x_2=-3< 0\Rightarrow\)pt đã cho có 2 nghiệm trái dấu

\(\Leftrightarrow\sqrt{x_1^2+2020}-x_2=x_1+\sqrt{x_2^2+2020}\)

\(\Rightarrow x_1^2+2020+x_2^2-2x_2\sqrt{x_1^2+2020}=x_1^2+x_2^2+2020+2x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow-x_2\sqrt{x_1^2+2020}=x_1\sqrt{x_2^2+2020}\)

\(\Rightarrow x_2^2\left(x_1^2+2020\right)=x_1^2\left(x_2^2+2020\right)\)

\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\)

\(\Rightarrow x_1+x_2=0\Rightarrow m-2=0\Rightarrow m=2\)

Có thể thế vào tìm nghiệm và thay vào điều kiện đề bài để thử cho chặt chẽ hơn (do các bước biến đổi ko tương đương)

5 tháng 7 2020

Mình

không

bít

làm!

5 tháng 7 2020

Mình

không

bít 

làm!                                                     

23 tháng 1 2020

1+1=?

2+2=?

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

1 tháng 5 2019

pt có 2 nghiệm pb dương

 <=> {delta=25-4m>0 

         { x1+x2=5>0

         {x1..x2=m>0

<=> 0<m <25/4

( x1canx2+x2canx1)2=36

x1^2..x2 +x1 ..x2^2 +2 (x1×x2)can (x1×x2)=36

sau đó sử ddụng viet và thay vào

mn cho mk hỏi

nếu đđặt câu hỏi trên OLM này thì khi có người giải đáp cho mk thì có thông báo k z

1 tháng 5 2020

Lập \(\Delta=25-4m\)

Phương trình có 2 nghiệm \(x_1;x_2\)khi \(\Delta\ge0\)hay \(m\le\frac{25}{4}\)

Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)

2 nghiệm \(x_1;x_2\)dương khi \(\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)hay m>0

Điều kiện để pt có 2 nghiệm dương  x1;x2 là \(0< m< \frac{25}{4}\)(*)

Ta có \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=5+2\sqrt{m}\)

=> \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{5+2\sqrt{m}}\)

Ta có \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\Leftrightarrow\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)=6\)

hay \(\sqrt{m}\sqrt{5+2\sqrt{m}}=6\Leftrightarrow2m\sqrt{m}+5m-36=0\left(1\right)\)

Đặt \(t=\sqrt{m}\ge0\)khi đó (1) trở thành

\(\Leftrightarrow2t^2+5t^2-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\2t^2+9t+18=0\end{cases}\Rightarrow t=2\Rightarrow m=4\left(tmđk\right)}\)

(vì 2t2+9t+18 vô nghiệm)

Vậy m=4 thì pt đã cho có 2 nghiệm dương x1;x2 thỏa mãn \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

2 tháng 5 2016

dễ lắm bạn mình cm pt đã cho luôn có hai nghiệm pb với mọi m sau đó áp dụng viet tính tích và tổng hai nghiệm  rồi quy đồng hệ thức đứa về dạng tích tổng rồi thay vô là dc

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

27 tháng 4 2020

Xét 

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=4m^2+4m+1-4m^2-4m+24=25>0\)

Vậy phương trình luôn có nghiệp với \(\forall m\)

Theo Viete ta có ngay \(x_1+x_2=2m+1;x_1x_2=m^2+m-6\)

Ta có biến đổi sau:

\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2=\left(2m+1\right)^2-3\left(m^2+m-6\right)\)

\(=4m^2+4m+1-3m^2-3m+18\)

\(=m^2-m+19=\left(m-\frac{1}{2}\right)^2+18,75>0\) 

Vậy \(\left|x_1^3+x_2^3\right|=\left|m^2-m+19\right|=m^2-m+19\)

Khi đó ta có được \(m^2-m+19=50\Leftrightarrow m^2-m-31=0\)

Đến đây dễ rồi nè :)