K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2

30 tháng 5 2017

đầu bài thiếu yêu cầu rồi

30 tháng 5 2017

| x1​2 - x22​​| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn

22 tháng 5 2021

B1 : giải PT (m tham số ) bằng cách tính denta  > 0

B2 : áp dụng hệ thức VI-ÉT    .. X1  + X2 = -b/a

                                                .. X1X2 = c/a

B3: thay x1 + x2 = -b/a vào pt (2) 

      thay x1x2 = c/a vào pt (2)

30 tháng 4 2019

a,Phần này dễ, bạn tự làm nha!! :))

b, Để phương trình có 2 nghiệm khác 0 thì: \(\Delta^'\ge0\)

Hay: \(\left(-1\right)^2-\left(-3m^2\right)\ge0\)

\(\Leftrightarrow1+3m^2\ge0\)

Mà: \(1+3m^2>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-3m^2\end{cases}}\)

Ta có: \(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow\frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}=\frac{8}{3}\)  (x1>x2)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{2^2-4\left(-3m^2\right)}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow\frac{2\sqrt{4+12m^2}}{-3m^2}=\frac{8}{3}\)

\(\Leftrightarrow6\sqrt{4+12m^2}=-24m^2\)

Mà: \(6\sqrt{4+12m^2}\ge0\forall m\)

và \(-24m^2\le0\forall m\)

=> Không có giá trị của m thỏa mãn

=.= hk tốt!!

( Có gì sai sót mong bạn bỏ qua ạ ><)

27 tháng 1 2023

sai từ khúc x1>x2 rồi minh mới giải xong m=+-1

 

 

21 tháng 5 2021

Đặt \(x^2=t\left(t>0\right)\)

\(pt\Leftrightarrow t^2-2\left(m+1\right)t+4m=0\left(1\right)\)

Để pt có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\hept{\begin{cases}\Delta'=m^2+2m+1-4m>0\\x_1+x_2=2\left(m+1\right)>0\\x_1.x_2=4m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2>0\\m>-1\\m>0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m\ne1\\m>0\end{cases}}\)

giả sử \(\hept{\begin{cases}x_1^2=x_2^2=t_1\\x_3^2=x_4^2=t_2\end{cases}\Rightarrow2x_1^2}+2x_3^2=12\)

\(\Leftrightarrow2\left(t_1+t_2\right)=12\)

\(\Leftrightarrow2.2\left(m+1\right)=12\Leftrightarrow m+1=3\Leftrightarrow m=2\) (TM)

Vậy m=2 thì pt có 4 nghiệm pb

30 tháng 5 2017

Ai giúp với

16 tháng 2 2020

a. Thay \(m=-2\) vào pt đề cho ta được pt:

\(x^2-6x-7=0\left(2\right)\)

Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)

b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)

Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)

\(\Leftrightarrow m\le6\)

Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)

Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)

Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:

\(6\left(2m-3\right)=24\)

\(\Rightarrow2m-3=4\)

\(\Rightarrow2m=7\)

\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)

Vậy .............

16 tháng 2 2020

b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)

Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)

Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)

Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)

\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)

\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)