K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b\end{matrix}\right.\)

\(\Rightarrow5a+b=22\)

\(\Leftrightarrow x_1x_2-5\left(x_1+x_2\right)=22\)

\(\Leftrightarrow\left(x_1-5\right)\left(x_2-5\right)=47\)

Vì x1,x2 là số nguyên dương nên

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-5=1\\x_2-5=47\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-5=47\\x_2-5=1\end{matrix}\right.\end{matrix}\right.\)=>.....

28 tháng 2 2016

Ta có:

  • \(x^2+y^2+x+y=4\)
  • x(x+y+1)+y(y+1)=2

=>

  • x^2+y^2+x+y=4
  • x^2+y^2+x+y+xy=2

=>

  • (x+y)^2+(x+y)-2xy=4
  • xy=-2

=>

  • (x+y)(x+y+1)=0
  • xy=-2

=>1)

  • x+y=0
  • xy=-2

2)

  • x+y=-1
  • xy=-2

giải các hệ pt 1) và 2) ta được (x;y)=(\(\left(\sqrt{2};-\sqrt{2}\right),\left(-\sqrt{2};\sqrt{2}\right),\left(-2;1\right),\left(1;-2\right)\)

Để phương trình có nghiệm cần : \(\(\(\(\Delta\ge0\)\)\)\)

hay \(\(\(\(\orbr{\begin{cases}a\ge2\\a\le-2\end{cases}}\)\)\)\)\(\(\(\(\orbr{\begin{cases}b\ge2\sqrt{17}\\b\le-2\sqrt{17}\end{cases}\left(\cdot\right)}\)\)\)\)

Gọi \(\(\(\(t\)\)\)\)là nghiệm chung 2 phương trình , ta có :

\(\(\(\(\hept{\begin{cases}t^2+t.a+1=0\\t^2+t.b+17=0\end{cases}}\)\)\)\)

\(\(\(\(\Rightarrow t\left(a-b\right)-16=0\Rightarrow a-b=\frac{16}{t}\)\)\)\)

Giải phương trình \(\(\(\(\left(1\right)\)\)\)\): tìm \(\(\(\(t\)\)\)\)theo \(a\):

\(\(\(\(t=\frac{-a\pm\sqrt{a^2-4}}{2}\Rightarrow b=a-\frac{32}{-a\pm\sqrt{a^2-4}}\)\)\)\)

Kết hợp với \(\(\(\(\left(\cdot\right)\)\)\)\): \(\(\(\(b\in(-\infty;-2\sqrt{17}]\)\)\)\)\(\(\(\([2\sqrt{17};+\infty)\)\)\)\)

+) Với \(\(\(\(b=a-\frac{32}{\sqrt{a^2-4}-a}=\frac{544a+\sqrt{a^2-4}}{32}\)\)\)\)

Nếu \(\(\(\(a\ge2\)\)\)\)thì \(\(\(b\ge18\left(tm\right)\)\)\)

Nếu \(\(\(\(a\le-2\)\)\)\), Ta phải chứng minh \(\(\(\(32a+\sqrt{a^2-4}\le-4\sqrt{17}\)\)\)\)hay \(\(\(\(32a+4\sqrt{17}\le-\sqrt{a^2-4}\)\)\)\)

____________cạn, hình như sai ở đâu , để xem lại________

_Sorry_

_Minh ngụy_

___Giải PT (1), tìm t theo a :_

.....................

\(a\ge2\Rightarrow b\ge18\left(tm\right)\)

\(a\le2\Rightarrow......................\)(luôn đúng với mọi \(b\))

+) Nếu \(b=a-\frac{32}{-a-\sqrt{a^2-4}}=\frac{544a-\sqrt{a^2-4}}{32}\). cũng tương tự như trên , thỏa mãn với 

\(a\in(-\infty;-2]\)U  \([2;+\infty)\)

Như vậy , tìm được b theo a \(b=\frac{544a\pm\sqrt{a^2-4}}{32}\)

Suy ra \(|a|+|b|=a+\frac{544+\sqrt{a^2-4}}{32}\)

Giờ chỉ việc xét \(|a|\in[2;+\infty)\)là ra min và a,b nha

_Minh ngụy_

19 tháng 5 2017

sai đề TT

4 tháng 7 2019

Xét phương trình \(\left(x^2+ax+b\right)=0\left(1\right)\) có \(\Delta_1=a^2-4b\)

Xét phương trình \(\left(x^2+bx+a\right)=0\left(2\right)\) có \(\Delta_2=b^2-4a\)

       \(\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)\)

mà \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow2\left(a+b\right)=ab\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=> Có ít nhất 1 trong 2 pt có nghiệm 

=> đpcm

22 tháng 5 2016

a) đenta=b^2-4c

2b+4c=-1=>c=-1-2b)/4

thay vô chứng minh nó lớn hơn 0

22 tháng 5 2016

x1+x2=b

x1x2=c

ta có x1=2x2

thay vô tìm x1;x2 theo b,c rồi thay vô 

mk tính được x1=2x;x2=b/3 thay cái này vô x1-2x2=0 tìm ra b

x1=căn(c/2);x2=căn(2c) thay vô cái x1-2x2=0 tìm ra c

DD
10 tháng 6 2021

\(ax_1+bx_2+c=0\)

\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).

Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).

Thật vậy, ta có: 

\(a^2c+ac^2+b^3-3abc=0\)

\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)

\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)

\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)

\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.

Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng. 

Khi đó \(M=0+2018=2018\).