Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3_1+x_2^3=\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=\left(x_1+x_2\right)\left(x^2_1+2x_1x_2-3x_1x_2+x^2_2\right).\)(1)
Áp dụng Đen-ta: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)
\(\left(x_1+x_2\right)^2=25.\)
<=> \(x^2_1+x_2^2+2x_1x_2=25.\)
(1) 5.(25-3)=5.22=110
Câu 2:
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)
ta có:\(x^2_1+x^2_2+2x_1x_2=25.\Rightarrow x^2_1+x^2_2=23\Rightarrow\left(x^2_1+x^2_2\right)^2=529.\)
\(\Leftrightarrow x^4_1+x^4_2+2x^2_1x^2_2=529.\)
\(\Rightarrow x^4_1+x^4_2=527\)
học tốt
b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)
\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)
Vậy pt (1) có 2 nghiệm x1,x2 với mọi m
Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)
Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
<=>\(4m^2-8m+4+2m+6=10\)
<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)
<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)
c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)
Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)
<=>\(2x_1x_2+x_1+x_2=-8\)
Áp dụng định lí Vi-et ta có \(\begin{cases}x_1+x_2=8\\x_1.x_2=6\end{cases}\)
- \(D=x_1^4-x_2^4=\left(x_1^2+x_2^2\right)\left(x_1-x_2\right)\left(x_1+x_2\right)\)
\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\sqrt{\left|\left(x_1+x_2\right)^2-4x_1x_2\right|}\)
- \(H=x_1^6+x_2^6=\left(x_1^2+x_2^2\right)\left(x_1^4+x_2^4-x_1^2x_2^2\right)=\left[\left(x_1+x_2\right)^2-2x_1.x_2\right].\left(D-x_1^2x_2^2\right)\)
D lấy từ câu trên nhé :)
Áp dụng các giá trị từ đl Vi-et thay vào và tính :)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
để phương trình có hai nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\ge0\Leftrightarrow-m^2-6m-5\ge0\Leftrightarrow m\in\left[-5;-1\right]\)
b. để phương trình có hia nghiệm thì \(m\in\left[-5;-1\right]\) khi đó \(\hept{\begin{cases}x_1+x_2=-\frac{2\left(m+1\right)}{2}=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{cases}\Rightarrow M=-m-1-m^2-4m-3=-m^2-5m-4}\)
hay \(M=-\left(m+1\right)\left(m+4\right)=\left(-1-m\right)\left(m+4\right)\le\left(\frac{-1-m+m+4}{2}\right)^2=\frac{9}{4}\)
Dấu bằng xảy ra khi \(-1-m=m+4\Leftrightarrow m=-\frac{5}{2}\)
\(pt:x^2-5x+1=0\)
Do x1 x2 là 2 nghiệm của pt, theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2=25-2x_1x_2=25-2.1=23\\x_1^2x_2^2=1\end{matrix}\right.\)
\(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=5^3-3.1.5=110\)
\(C=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=23^2-2.1=527\)