Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
a) Tự giải
b) xét denta, đặt điều kiện của m
xét viet x1+x2 vs x1.x2
từ x1^3x2 + x1x2^3 =-11 => x1x2(x1^2+x2^2) = -11 =>x1x2((x1+x2)^2)-2x1x2) =-11
thế viet vao giải, nhơ so sánh đk
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Để phương trình có 2 nghiệm \(x_1,x_2\)thì \(\Delta=4\left(m^2+2m+1\right)-4\left(2m+3\right)>0\Leftrightarrow4m^2-8>0\)
\(\Leftrightarrow m^2>2\Leftrightarrow\orbr{\begin{cases}m< -\sqrt{2}\\m>\sqrt{2}\end{cases}}\)
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2.\left(m+1\right)\\x_1.x_2=2m+3\end{cases}}\)
Từ \(\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2-2x_1x_2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow4\left(m+1\right)^2-4\left(2m+3\right)=4\Leftrightarrow4m^2+8m+4-8m-12-4=0\)
\(\Leftrightarrow m^2=3\Leftrightarrow\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)
Kết hợp ĐK ta thấy \(\orbr{\begin{cases}m=\sqrt{3}\\m=-\sqrt{3}\end{cases}}\)thỏa mãn yêu cầu bài toán
a) Phương trình (1) có nghiệm x=-2 khi:
(-2)2-(m+5).(-2)-m+6=0
<=> 4+2m+10-m+6=0
<=> m=-20
b) \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+10m+25+4m-24=m^2+14m+1\)
Phương trình (1) có nghiệm khi \(\Delta=m^2+14m+1\ge0\)(*)
Với điều kiện trên, áp dụng định lý Vi-et ta có:
\(S=x_1+x_2=m+5;P=x_1\cdot x_2=-m+6\)
Khi đó:
\(x_1^2x_2+x_1x_2^2=24\)<=> \(x_1x_2\left(x_1+x_2\right)=24\)
<=> (-m+6)(m+5)=24
<=> m2-m-6=0
<=> m=3; m=-2
Giá trị m=3 (tm), m=-2 (ktm) điều kiện (*)
Vậy m=3 là giá trị cần tìm
a. thay n vào rồi tìm x
b. có x2-2(n-1)x+n2-5=0 là ptb2 có a=1; b=-2(n-1); b'=-n+1; c=n2-5
\(\Delta'=b'^2-ac=\left(-n+1\right)^2-1\cdot\left(n^2-5\right)=n^2-2n+1-n^2+5=-2n+6\)
Để (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta'>0\Rightarrow-2n+6>0\Rightarrow-2n>-6\Rightarrow n< -3\)
Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=n-1\\x_1x_2=\frac{c}{a}=n^2-5\end{cases}}\)
TBR có: \(x_1^2+x_2^2=14\Rightarrow x_1^2+x_2^2+2x_1x_2-2x_1x_2=14\)\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\Leftrightarrow\left(n-1\right)^2-2\left(n^2-5\right)=14\)
\(\Leftrightarrow n^2-2n+1-2n^2+10=14\)
\(\Leftrightarrow-n^2-2n+11-14=0\)
\(\Leftrightarrow-n^2-2n-3=0\)
\(\Leftrightarrow-\left(n^2+2n+3\right)=0\Leftrightarrow n^2+2n+3=0\Leftrightarrow\left(n+3\right)\left(n-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=-3\left(ktm\right)\\n=1\left(tm\right)\end{cases}}\)
Vậy n=1 thì thỏa mãn yêu cầu bài toán
Cho phương trình : x2 - 2(n - 1)x + n2 - 5 = 0 (1)
a, Giải phường trình (1) khi n=-1
Với n=-1 pt (1) trở thành x2 + 4x - 4 = 0
Δ' = b'2 - ac = 4 + 4 = 8
Δ' > 0, áp dụng công thức nghiệm thu được \(x=-2\pm2\sqrt{2}\)
Vậy ...
b, Tìm n để phương trình (1) có 2 nghiệm thoả mãn hệ thức x12 + x22 = 14
Trước hết ta cần xét xem với ĐK nào của n thì phương trình có hai nghiệm
Δ' = b'2 - ac = [-(n-1)]2 - n2 + 5 = n2 - 2n + 1 - n2 + 5 = 6 - 2n
pt có hai nghiệm <=> Δ' > 0 <=> 6 - 2n > 0 <=> n < 3
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2n-2\\x_1x_2=\frac{c}{a}=n^2-5\end{cases}}\)
Khi đó x12 + x22 = 14 <=> ( x1 + x2 )2 - 2x1x2 = 14
<=> ( 2n - 2 )2 - 2( n2 - 5 ) = 14
<=> 4n2 - 8n + 4 - 2n2 + 10 - 14 = 0
<=> n2 - 4n = 0
<=> n( n - 4 ) = 0
<=> n = 0 (tm) hoặc n = 4 (ktm)
Vậy ...