Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để PT có 2 nghiệm phân biệt thì
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow m< 0\)
Theo vi et ta có:
\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)
Theo đề bài thì
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)
Với m < 0 thì VP > 0
Vậy không tồn tại m để thỏa bài toán.
a) ĐK:\(m^2-4m+4\ge0\left(LĐ\right)\)
Theo hệ thức Viet:\(x_1+x_2=m;x_1x_2=m-1\)
\(R=\frac{2m-2+3}{m^2-2m+2+2\left(1+m-1\right)}\)
\(=\frac{2m+1}{m^2+2}\)
\(\Rightarrow Rm^2+2R-2m-1=0\)
Để pt có ng0:\(1-R\left(2R-1\right)\ge0\)
\(\Leftrightarrow-2R^2+R+1\ge0\)
\(\Leftrightarrow\frac{-1}{2}\le R\le1\)
\(R_{max}=1\)
b) Trừ đi rồi tìm m.
Ta có:\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)=-2m\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow-2m>0\Leftrightarrow m< 0\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1\cdot x_2=m^2-2m+4\end{matrix}\right.\)
Mặt khác: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\) \(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Rightarrow\frac{2}{\left(4-2m\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)
\(\Rightarrow\) ...
bạn tìm đenta
sau đó cho đenta >0
theo hệ thức viets tính đc x1+x2, x1*x2
bình phương 2 vế của pt thỏa mãn thế x1, x2 tương ứng là tìm dc m
mik chỉ nêu ý chình thôi nha mik hơi bận
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
Đk pt có 2 nghiêm pb
\(\Delta=a^2-4>0\)
=>\(a^2>4\)
=>\(\orbr{\begin{cases}a>2\\a< -2\end{cases}}\)
theo Đly Vi-et, ta có x1+x2=-a
x1.x2=1
\(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}=\frac{x_1^4+x_2^4}{x_1^2.x_2^2}=\frac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2}{1}=\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-2=\left(a^2-2\right)^2-2\)
=>(a2-2)2-2 >7
=>(a2-2)2 >9
=>\(\orbr{\begin{cases}a^2-2>3\\a^2-2< -3\end{cases}=>\orbr{\begin{cases}a^2>5\\a^2< -1\left(loai\right)\end{cases}=>\orbr{\begin{cases}a>\sqrt{5}\\a< -\sqrt{5}\end{cases}}}\left(tmdk\right)}\)
Đầu tiên để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) rồi tìm điều kiện của m
Dùng Vi-ét tính ra m thôi bạn