Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Thay \(m=-2\) vào pt đề cho ta được pt:
\(x^2-6x-7=0\left(2\right)\)
Lại có: \(a-b+c=1+6-7=0\) nên pt 2 có nghiệm là: \(x_1=1\)và \(x_2=7\)
b. Ta có: \(\Delta'=\left(-3\right)^2-1\left(2m-3\right)=9-2m+3=12-2m\)
Để pt 1 có 2 nghiệm \(x_1;x_2\Leftrightarrow12-2m\ge0\)
\(\Leftrightarrow m\le6\)
Theo hệ thức vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\left(3\right)\)
Theo đề bài ta có: \(x^2_1x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\left(4\right)\)
Thay \(\left(3\right)\)vào \(\left(4\right)\)ta được:
\(6\left(2m-3\right)=24\)
\(\Rightarrow2m-3=4\)
\(\Rightarrow2m=7\)
\(\Rightarrow m=\frac{7}{2}\left(tmđkxđ\right)\)
Vậy .............
b, \(\Delta'=\left(-6\right)^2-1.\left(2m-3\right)=36-2m+3=39-2m\)
Để pt (1) có 2 nghiệm <=> \(\Delta'\ge0\Leftrightarrow39-2m\ge0\Leftrightarrow m\le\frac{39}{2}\)
Theo hệ thức vi-ét ta có: \(x_1+x_2=\frac{-\left(-6\right)}{1}=6;x_1x_2=\frac{2m-3}{1}=2m-3\)
Theo bài ra ta có: \(x_1^2x_2+x_1x_2^2=24\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=24\)
\(\Leftrightarrow\left(2m-3\right).6=24\Leftrightarrow2m-3=24\)
\(\Leftrightarrow2m=27\Leftrightarrow m=\frac{27}{2}\left(TM\right)\)
Chuyển vế :
\(x_1^2=2\left(m+1\right)x_1-m^2+1\)
thay vào Phuogw trình tìm m thôi
1. Với m=5
\(\Rightarrow x^2-\left(2.5+1\right).x+5^2-1=0\\ \Rightarrow x^2-11.x=-24\\ \)
\(\Rightarrow x^2-\frac{11}{2}.2.x+\left(\frac{11}{2}\right)^2=-24-\left(\frac{11}{2}\right)^2=\frac{-217}{4}\\ \Rightarrow\left(x+\frac{11}{2}\right)^2=-\frac{217}{4}\)
nên x thuộc rỗng
Theo hệ thức vi ét thì : \(x_1.x_2=m+8\)
\(< =>\hept{\begin{cases}x_1=\frac{m+8}{x_2}\\x_2=\frac{m+8}{x_1}\end{cases}}\)
Khi đó : \(\left(\frac{m+8}{x_2}\right)^3-\frac{m+8}{x_1}=0\)
\(< =>\frac{\left(m+8\right)^3}{x_2^3}-\frac{m+8}{x_1}=0\)
\(< =>\left(m+8\right)\left(\frac{\left(m+8\right)^2}{x_2^3}-\frac{1}{x_1}\right)=0\)
\(< =>\orbr{\begin{cases}m=-8\\\frac{m^2+16m+64}{x_2^3}=\frac{1}{x_1}\left(+\right)\end{cases}}\)
\(\left(+\right)< =>m^2.x_1+16m.x_1+64x_1=x_2^3\)
Tự giải tiếp :D
Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.
Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=−2m2{x1+x2=3x1x2=−2m2
Điều kiện x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2
Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.
Với x1=−2x2,x1=−2x2, giải hệ {x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3
Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.
Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.
Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=−2m2{x1+x2=3x1x2=−2m2
Điều kiện x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2
Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.
Với x1=−2x2,x1=−2x2, giải hệ {x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3
Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.
Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)
Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)
Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)
Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)