K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2024

a: \(x^2-mx-1=0\)

a=1; b=-m; c=-1

Vì \(a\cdot c=1\cdot\left(-1\right)< 0\)

nên (1) luôn  có hai nghiệm trái dấu

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

\(A=\dfrac{x_1^2+x_1-1}{x_1}-\dfrac{x_2^2+x_2-1}{x_2}\)

\(=x_1+1-\dfrac{1}{x_1}-x_2-1+\dfrac{1}{x_2}\)

\(=\left(x_1-x_2\right)-\left(\dfrac{1}{x_1}-\dfrac{1}{x_2}\right)\)

\(=\left(x_1-x_2\right)-\dfrac{x_2-x_1}{x_1x_2}\)

\(=\left(x_1-x_2\right)+\dfrac{x_1-x_2}{x_1x_2}\)

\(=\left(x_1-x_2\right)-\left(x_1-x_2\right)=0\)

24 tháng 5 2021

a)Có ac=-1<0

=>pt luôn có hai nghiệm trái dấu

b)Do x1;x2 là hai nghiệm của pt

=> \(\left\{{}\begin{matrix}x_1^2-mx_1-1=0\\x_2^2-mx_2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-1=mx_1\\x_2^2-1=mx_2\end{matrix}\right.\)

=>\(P=\dfrac{mx_1+x_1}{x_1}-\dfrac{mx_2+x_2}{x_2}\)\(=m+1-\left(m+1\right)=0\)

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

29 tháng 11 2023

\(x^2-4x-6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)

=>Phương trình này có hai nghiệm phân biệt

Theo vi-et, ta có:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4^2-2\cdot\left(-6\right)=16+12=28\)

\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)

\(C=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)

\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)

\(D=\left|x_1-x_2\right|\)

\(=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{20a-11}{2012}\\x_1x_2=-1\end{matrix}\right.\)

\(P=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(\dfrac{x_1-x_2}{2}-\dfrac{x_1-x_2}{x_1x_2}\right)^2\)

\(=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(x_1-x_2\right)^2\left(\dfrac{1}{2}-\dfrac{1}{x_1x_2}\right)^2\)

\(=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(x_1-x_2\right)^2\left(\dfrac{1}{2}+1\right)^2\)

\(=6\left(x_1-x_2\right)^2=6\left(x_1+x_2\right)^2-24x_1x_2\)

\(=6\left(\dfrac{20a-11}{2012}\right)^2+24\ge24\)

Dấu "=" xảy ra khi \(a=\dfrac{11}{20}\)

7 tháng 7 2019

Nếu đề bài là

Tính P=\(\frac{x_1^2+x_1-1}{x_1}\)-\(\frac{x_2^2+x_2-1}{x_2}\)

Thì lời giải như sau:

Theo định lý Viete, ta có:

x1.x2=-1

Khi đó P=\(\frac{x_1^2+x_1+x_1.x_2}{x_1}\)-\(\frac{x_2^2+x_2+x_1.x_2}{x_2}\)

Do x1 và x2 không thể bằng không nên ta chia tử mẫu của mỗi hạng tử cho x1,x2

Khi đó P=x1+x2+1-(x2+x1+1)=0

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\)

\(=\dfrac{x_1+x_2}{x_1x_2}\)

\(=\dfrac{5}{-1}=-5\)

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

1: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)

\(=4m^2-8m+4-4m+12\)

\(=4m^2-12m+16\)

\(=\left(2m-3\right)^2+7>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

2: Theo vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m-3\end{matrix}\right.\)

Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=x_1x_2\)

\(\Leftrightarrow x_1^2+x_2^2=\left(m-3\right)^2\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m-3\right)-\left(m-3\right)^2=0\)

\(\Leftrightarrow4m^2-16m+4-2m+6-m^2+6m-9=0\)

\(\Leftrightarrow3m^2-12m+1=0\)

\(\text{Δ}=\left(-12\right)^2-4\cdot3\cdot1=144-12=132>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12-2\sqrt{33}}{6}=\dfrac{6-\sqrt{33}}{3}\\x_2=\dfrac{6+\sqrt{33}}{3}\end{matrix}\right.\)

20 tháng 5 2022

Δ=\(\left(2m-1\right)^2\)−4(m−3) pk ạ...

NV
28 tháng 2 2023

Ta có \(ac=-m^2-2< 0\) ; \(\forall m\) nên pt đã cho luôn có 2 nghiệm trái dấu

Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)

\(\Rightarrow2\left|x_1\right|-\left|x_2\right|=4\Leftrightarrow-2x_1-x_2=4\)

Kết hợp với hệ thức Viet: \(x_1+x_2=-m+1\)

\(\Rightarrow\left\{{}\begin{matrix}-2x_1-x_2=4\\x_1+x_2=-m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x_1=-m+5\\x_1+x_2=-m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=m-5\\x_2=-2m+6\end{matrix}\right.\)

Thay vào \(x_1x_2=-m^2-2\)

\(\Rightarrow\left(m-5\right)\left(-2m+6\right)=-m^2-2\)

\(\Leftrightarrow m^2-16m+28=0\Rightarrow\left[{}\begin{matrix}m=2\\m=14\end{matrix}\right.\)

28 tháng 2 2023

 E cảm ơn thầy ạ!