Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
phương trình: x^2-(m+1)x+2m-2=0 (1)
phương trình(1) là ptbh ẩn x có:đen ta = (-(m+1))^2 -4.1.(2m-2) =m^2+2m+1-8m+8 =m^2-6m+9 = (m-3)^2 với mọi m thuộc r
phương trình (1) có 2 nghiệm pb khi và chỉ khi đen ta lớn hơn 0 suy ra (m-3)^2 lớn hơn 0
khi và chỉ khi m-3 lớn hơn 0. ki và chỉ khi m lớn hơn 3.
theo hệ thức vi ét ta có x1+x2=m+1 (2) ;x1.x2=2m-2 (3)
có 3(x1+x2)-X1.X2=10 (4)
từ (2) (3) (4) suy ra 3(m+1)-(2m-2)=10
khi và chỉ khi 3m+3-2m+2=10
khi và chỉ khi m+5=10
khi và chỉ khi m=5
vậy khi m=5 thì pt(1) có 2n pb x1,x2 thỏa mãn 3(x1+x2)-x1.x2=10
Cách 1:
Từ pt ta có:
\(\Delta=\left(m-3\right)^2>0\)
=>x1=(m-1-m+3)/2=1
->x2=(m-1+m-2)/2=(2m-3)/2
Bạn thay x1,x2 vào rồi tính nha tới đây thì đơn giản rồi.
Cách 2:
từ pt ta có:
\(\hept{\begin{cases}\Delta=\left(m-3\right)^2>0\\x_1+x_2=m-1\\x_1x_2=2-2m\end{cases}}\)
Bạn cũng thay vào rồi tính nha.
Đúng thì nhớ k cho mình nha.
\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)
a.
\(x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Leftrightarrow4m^2+3=7\)
\(\Rightarrow m^2=1\Rightarrow m=\pm1\)
b.
\(x_1-x_2=0\Rightarrow x_1=x_2\Rightarrow x_1x_2=x_2^2\ge0\) (vô lý do \(x_1x_2=-1< 0\) với mọi m)
Vậy ko tồn tại m thỏa mãn yêu cầu
Δ=5^2-4(m-3)
=25-4m+12=-4m+27
Để phương trình có 2 nghiệm thì -4m+27>=0
=>m<=27/4
Theo đề, ta có: x1-2<0 và x2-2>0
=>(x1-2)(x2-2)<0
=>x1x2-2(x1+x2)+4<0
=>m-3-2*(-5)+4<0
=>m+1+10<0
=>m<-11
đề ko nói nói rõ 2 nghiệm thế nào nên tui cho là 2 nghiệm phân biệt
a)\(\Delta=\left(-6\right)^2-4.m=36-4m\)
Để phương trình có 2 nghiệm phân biệt thì:
\(36-4m>0\Leftrightarrow m<9\)
b)Theo định lí vi-et ta có: \(x_1+x_2=6;x_1.x_2=m\)
=>\(\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1.x_2=\left(x_1+x_2\right)^2-4x_1.x_2\)
\(=6^2-4.m=36-4m\)
Mà x1-x2=4 nên: 42=36-4m
<=>tự giải tìm m
phương trình thiếu vế sao chắc là =0
a)tính denta và giải khi denta >0 tìm ra m
b)dựa vào viet
sử dụng định lí vi-ét nhé
Theo định lí vi-et ta có:
\(x_1+x_2=5\)
\(x_1.x_2=m\)
ĐK: 25 > hoặc = 4m
*|x1-x2|=3
Với x1>x2 =>x1-x2=3
=>*x1=3+x2
=>3+x2+x2=5
tự tìm x2
*x2=x1-3
thế vô tìm x1
rồi thế x1 ; x2 vô x1.x2=m xong
tượng tự với TH x1<x2