K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Δ=(-2m)^2-4(m-2)

=4m^2-4m+8=(2m-1)^2+7>=7>0

=>PT luôn có hai nghiệm phân biệt

b: x1^2+x2^2-6x1x2

=(x1+x2)^2-8x1x2

=(2m)^2-8(m-2)

=4m^2-8m+16=(2m-2)^2+8>=8

=>24/(2m-2)^2+8<=3

=>M>=-3

Dấu = xảy ra khi m=1

Ta có: \(\Delta'=2m^2+4>0\forall m\)

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)

Mặt khác: \(x_1^2+x_2^2=20\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)

  Vậy ...

12 tháng 5 2021

sai rồi thì phải

30 tháng 4 2020

a) Phương trình có \(\Delta'=m^2-4m+8=\left(m-2\right)^2+4>0\forall m\)nên phương trình có 2 nghiệm phân biệt với mọi m

b) Do đó, theo Viet với mọi m ta có: \(S=-\frac{b}{a}=2m;P=\frac{c}{a}=m-2\)

\(M=\frac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{-24}{4m^2-8m+16}=\frac{-6}{m^2-2m+4}\)

\(=\frac{-6}{\left(m-1\right)^2+3}\)

Khi m=1 ta có (m-1)2+3 nhỏ nhất

=> \(-M=\frac{6}{\left(m-1\right)^2+3}\)lớn nhất khi m=1

=> \(M=\frac{-6}{\left(m-1\right)^2+3}\)nhỏ nhất khi m=1

13 tháng 5 2021

PT có 2 nghiệm `x_1,x_2`

`<=>\Delta>0`

`<=>(2m+3)^2-4m>0`

`<=>4m^2+12m+9-4m>0`

`<=>4m^2+8m+9>0``

`<=>(2m+2)^2+5>0`(luôn đúng)

Áp dụng vi-ét:$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}$
$x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1.x_2\\=(2m+3)^2-2m\\=4m^2+12m+9-2m\\=4m^2+10m+9\\=(2m+\dfrac52)^2+\dfrac{11}{4} \geq \dfrac{11}{4}$
Dấu "=" `<=>2m=-5/2<=>m=-5/4`

28 tháng 10 2019

Đáp án D

Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8=(2m-4)^2+8>=8>0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

\(B=\dfrac{x_1^2}{x^2_2}+\dfrac{x_2^2}{x_1^2}\)

\(=\dfrac{x_1^4+x_2^4}{\left(x_1\cdot x_2\right)^2}=\dfrac{\left(x_1^2+x_2^2\right)^2-2\left(x_1\cdot x_2\right)^2}{\left(x_1\cdot x_2\right)^2}\)

\(=\dfrac{\left[\left(2m-2\right)^2-2\left(2m-5\right)\right]^2-2\left(2m-5\right)^2}{\left(2m-5\right)^2}\)

\(=\dfrac{\left(4m^2-8m+4-4m+10\right)^2}{\left(2m-5\right)^2}-2\)

\(=\left(\dfrac{4m^2-12m+14}{2m-5}\right)^2-2\)

\(=\left(\dfrac{4m^2-10m-2m+5+9}{2m-5}\right)^2-2\)

\(=\left(2m-1+\dfrac{9}{2m-5}\right)^2-2\)

Để B nguyên thì \(2m-5\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(m\in\left\{3;2;4;1;7\right\}\)

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

7 tháng 4 2022

a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)

Để pt có nghiệm x1, x2 thì \(\Delta>0\)

\(\Leftrightarrow16-8m>0\)

\(\Leftrightarrow-8m>-16\)

\(\Leftrightarrow m< 2\)

b.

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow4^2-2.2m-4-16=0\)

\(\Leftrightarrow-4m-4=0\)

\(\Leftrightarrow m=-1\)

NV
7 tháng 4 2022

a.

Phương trình có 2 nghiệm khi:

\(\Delta'=4-2m\ge0\Rightarrow m\le2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1-x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)

\(\Leftrightarrow16-4m-4=16\)

\(\Leftrightarrow m=-1\) (thỏa mãn)

a: Thay x=-3 vào pt, ta được:

9+6m+2m+1=0

=>8m+10=0

hay m=-5/4

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)

\(=4m^2-8m-4\)

\(=4\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì (m-2)(m+1)>=0

=>m>=2 hoặc m<=-1

c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)

\(\Leftrightarrow\left(2m\right)^2=16\)

=>2m=4 hoặc 2m=-4

=>m=2(nhận) hoặc m=-2(nhận)