K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2021

a. Bạn tự giải

b. Pt có nghiệm kép khi:

\(\Delta'=\left(m+1\right)^2-4m=0\Leftrightarrow m^2-2m+1=0\Leftrightarrow m=1\)

Khi đó: \(x_{1,2}=m+1=2\)

c. Do pt có nghiệm bằng 4:

\(\Rightarrow4^2-2\left(m+1\right).4+4m=0\)

\(\Leftrightarrow8-4m=0\Rightarrow m=2\)

\(x_1x_2=4m\Rightarrow x_2=\dfrac{4m}{x_1}=\dfrac{4.2}{4}=2\)

15 tháng 6 2016

a)(m-1)x2+2(m-1)x-m

pt bậc 2 có dạng ax2+bx+c=0.

a=(m-1);b=(m-1);c=-m

áp dụng b2-4ac.ta có:Denta=(m-1)2-4[(-m)*(m-1)]

Để pt có nghịm kép =>Denta=0

=>(m-1)2-4[(-m)*(m-1)]=0

=>m=1 hoặc m=0

Thay với m=1 vào và m=0 vào tự tính

b)Để pt có 2 nghiệm phân biệt thì Denta>0

=>(m-1)2-4[(-m)*(m-1)]>0

=>5m2-6m+1>0 

Giải BPT này ra

15 tháng 6 2016

à mk thêm 1 bước nữa để bạn giải cho nhẹ

5m2-6m+1>0

<=>(m-1)(5m-1)>0 tới đây học sinh lớp 6 cx có thể giải đc nhé chúc bạn học tốt

a: Thay x=-1 vào (6), ta được:

1+2m+m+6=0

=>3m+7=0

=>m=-7/3

x1+x2=-2m/1=-2*7/3=-14/3

=>x2=-14/3-x1=-14/3+1=-11/3

b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)

Để phương trình có nghiệm kép thì 3m+6=0

=>m=-2

Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0

=>x^2-4x+4=0

=>x=2

29 tháng 1 2023

ụa bạn ơi, trên câu a á m= -7/3 vậy sao xuống dưới thành 7/3 rồi

10 tháng 4 2021

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)