Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)
\(=4m^2+16m+16+8m+20=4m^2+24m+36\)
\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m+3<>0
hay m<>-3
Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)
\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)
\(\Leftrightarrow4m^2+24m+36=4\)
\(\Leftrightarrow m^2+6m+9=1\)
=>m+3=1 hoặc m+3=-1
=>m=-2 hoặc m=-4
a, Thay \(m=1\) vào \(\left(1\right)\)
\(\Rightarrow x^2-7x+1=0\\ \Delta=\left(-7\right)^2-4.1.1=45\\ \Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7+3\sqrt{5}}{2}\\x_2=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\)
b, \(\Delta=\left(-7\right)^2-4.m=49-4m\)
phương trình cs nghiệm \(49-4m\ge0\\ \Rightarrow m\le\dfrac{49}{4}\)
Áp dụng hệ thức vi ét
\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=m\end{matrix}\right.\)
\(x^2_1+x^2_2=29\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\\ \Leftrightarrow7^2-2.m-29=0\\ \Leftrightarrow20-2m=0\\ \Rightarrow m=10\left(t/m\right)\)
Vậy \(m=10\)
Làm câu b)
Để phương trình có hai nghiệm phân biệt:
\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)
Áp dụng định lí Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)
Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)
Từ 1, 2 ta có:
\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)
Vậy ...
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
a, Thay m=3 vào pt ta có:
\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)
b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
\(\Delta'=\left(m-2\right)^2+5>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)
\(\left|\left|x_1\right|-\left|x_2\right|\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|-\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=16\)
\(\Leftrightarrow4\left(m-2\right)^2-2.\left(-5\right)-2.\left|-5\right|=16\)
\(\Leftrightarrow\left(m-2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)
Ptr có `2` nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2-(m+1) >= 0`
`<=>m^2-2m+1-m-1 >= 0`
`<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`
Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`
`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`
`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`
`<=>[(2m-2)^2-2(m+1)]/[m+1]=4` `(m ne -1)`
`=>4m^2-8m+4-2m-2=4m-4`
`<=>4m^2-14m+8=0`
`<=>m=[7+-\sqrt{17}]/4` (ko t/m)
`=>` Ko có giá trị `m` t/m
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Δ=(2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3=(2m-1)^2+3>0
=>Phương trình có hai nghiệm pb
x1<1<x2
=>x2-1>0 và x1-1<0
=>(x1-1)(x2-1)<0
=>x1x2-(x1+x2)+1<0
=>m-1-2m+1<0
=>-m<0
=>m>0
a: Thay m=-1 vào phương trình, ta được:
\(x^2-2\left(-1-1\right)x+\left(-1\right)+1=0\)
=>\(x^2+4x=0\)
=>x(x+4)=0
=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\)
\(=4\left(m^2-2m+1\right)-4\left(m+1\right)\)
\(=4\left(m^2-3m\right)\)
Để phương trình có hai nghiệm thì Δ>=0
=>m^2-3m>=0
=>m(m-3)>=0
=>\(\left[{}\begin{matrix}m>=3\\m< =0\end{matrix}\right.\)
Theo Vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right);x_1x_2=m+1\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
=>\(\dfrac{x_1^2+x_2^2}{x_1x_2}=4\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)
=>\(\left(2m-2\right)^2-6\left(m+1\right)=0\)
=>\(4m^2-8m+4-6m-6=0\)
=>\(4m^2-14m-2=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{4}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{4}\left(nhận\right)\end{matrix}\right.\)