Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2
a) Phương trình (1) có nghiệm x=-2 khi:
(-2)2-(m+5).(-2)-m+6=0
<=> 4+2m+10-m+6=0
<=> m=-20
b) \(\Delta=\left(m+5\right)^2-4\left(-m+6\right)=m^2+10m+25+4m-24=m^2+14m+1\)
Phương trình (1) có nghiệm khi \(\Delta=m^2+14m+1\ge0\)(*)
Với điều kiện trên, áp dụng định lý Vi-et ta có:
\(S=x_1+x_2=m+5;P=x_1\cdot x_2=-m+6\)
Khi đó:
\(x_1^2x_2+x_1x_2^2=24\)<=> \(x_1x_2\left(x_1+x_2\right)=24\)
<=> (-m+6)(m+5)=24
<=> m2-m-6=0
<=> m=3; m=-2
Giá trị m=3 (tm), m=-2 (ktm) điều kiện (*)
Vậy m=3 là giá trị cần tìm
a)với m=1 ta có:
x2-(2*1+1)x+12+1-6=0
<=>x2-3x+2-6=0
<=>x2-3x-4=0
denta:(-3)2-(-4(1.4))=25
x1,2=\(\frac{3\pm\sqrt{25}}{2}\)=>x=-1 hoặc 4
Câu a chắc lm đc chứ
b/ (x1 - 1)2 + (x2 - 1)2 = 4
=> x12 - 2x1 + 1 + x22 - 2x2 + 1 = 4
=> (x12 + x22) - 2(x1 + x2) - 2 = 0
=> (x1 + x2)2 - 2x1x2 - 2(x1 + x2) - 2 = 0
=> (2m - 2)2 - 2.3 - 2.(2m - 2) - 2 = 0
=> 4m2 - 8m + 4 - 6 - 4m + 4 - 2 = 0
=> 4m2 - 12m = 0
=> 4m(m - 3) = 0
=> 4m = 0 => m = 0
hoặc m - 3 = 0 => m = 3
Vậy m = 0 , m = 3