K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

\(\overrightarrow{u_d}=\left(1;-2\right)\Rightarrow\) d có 1 vtpt là \(\overrightarrow{n_d}=\left(2;1\right)\)

Phương trình tổng quát:

\(2\left(x-5\right)+1\left(y+9\right)=0\Leftrightarrow2x+y-1=0\)

a: Δ có vtcp là (2;-1) và đi qua A(1;-3)

=>VTPT là (1;2)

PTTQ là:

1(x-1)+2(y+3)=0

=>x-1+2y+6=0

=>x+2y+5=0

b: Vì d vuông góc Δ nên d: 2x-y+c=0

Tọa độ giao của d1 và d2 là:

x+2y=8 và x-2y=0

=>x=4 và y=2

Thay x=4 và y=2 vào 2x-y+c=0, ta được

c+2*4-2=0

=>c=-2

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn A

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn B.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)

Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên  phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).

b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)

Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên  phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).

6 tháng 4 2017

\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)

rút x từ (1) thế vào (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)

\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)

\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)

\(\Leftrightarrow Ay=B\)

Taco

\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)

\(\Rightarrow y>0\forall m\in R\)

Kết luận không có m thủa mãn

26 tháng 3 2020
https://i.imgur.com/HaXu9jP.jpg
26 tháng 3 2020
https://i.imgur.com/b0eBoIF.jpg
27 tháng 9 2019

giups mình với mình đang cần gấp

8 tháng 5 2021

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)