Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta^'=\left(2-m\right)^2-1\cdot\left(-3\right)=\left(m-2\right)^2+3>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt
Theo hệ thức viete ta có: \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1x_2=-3\end{cases}}\)
\(\Rightarrow\left|x_1x_2^2\right|+\left|x_1^2x_2\right|=18\)
\(\Leftrightarrow\left|x_1x_2\right|\left(\left|x_1\right|+\left|x_2\right|\right)=18\)
\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=6\)
Xét dấu x tự giải ra nhé
dầu tiên bn tìm đenta phẩy
sau đó cm nó lớn hơn 0
theo hệ thức viet tính đc x1+x2=... và x1*x2=....
thay vào hệ thức đã cho tính đc ..
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
Để phương trình có hai nghiệm thì \(\Delta'>0\).
\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)
Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo Viet:
\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)
\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)
\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)
\(\Leftrightarrow2m^2-5m+4=1\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3\right)\)
= 4(m + 1)2 - 4m2 - 12
= 4m2 + 8m + 4 - 4m2 - 12 = 8m - 8
Để pt có 2 nghiệm thì \(\Delta\ge0\) <=> 8m - 8 \(\ge\)0
<=> 8(m - 1) \(\ge\) 0
<=> m -1 \(\ge\)0
<=> m \(\ge\) 1
Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)=2m+2\\x_1.x_2=m^2+3\end{cases}}\)
Theo đề ta có: \(\frac{x1}{x2}+\frac{x2}{x1}=\frac{8}{x1.x2}\)
ĐK: x1, x2 \(\ne\)0 => \(\hept{\begin{cases}x1+x2\ne0\\x1.x2\ne0\end{cases}}hay\hept{\begin{cases}2m+2\ne0\\m^2+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-1\\m^2\ne-3\end{cases}}\Leftrightarrow m\ne-1\)
<=> \(\frac{\left(x_1\right)^2+\left(x_2\right)^2}{x1.x2}=\frac{8}{x1.x2}\)
=> \(\left(x_1\right)^2+\left(x_2\right)^2=8\)
<=> \(\left(x_1+x_2\right)^2-2.x_1.x_2=8\)
Hay (2m + 2)2 - 2(m2 + 3) = 8
<=> 4m2 + 8m + 4 - 2m2 - 6 = 8
<=> 2m2 + 8m - 10 = 0
a + b + c = 2 + 8 + (-10) = 0
=> m = 1 (tmđk) và m = \(\frac{c}{a}=-5\)(ktmđk)
Vậy m = 1 thì ....
a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm
Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)
Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)
b) Thay x = 2 vào pt đã cho , tìm được m = -6
Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)
Vậy nghiệm còn lại là x = 4/5
c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)
\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)
d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)
\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)
=> Min A = 87/32 <=> m = 19/16
\(ac< 0\) nên pt luôn có 2 nghiệm pb trái dấu
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-3\end{matrix}\right.\)
\(\left|x_1x_2.x_2\right|+\left|x_1x_2.x_1\right|=18\)
\(\Leftrightarrow\left|-3x_2\right|+\left|-3x_1\right|=18\)
\(\Leftrightarrow\left|x_1\right|+\left|x_2\right|=6\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=36\)
\(\Leftrightarrow4\left(m-2\right)^2+12=36\)
\(\Leftrightarrow\left(m-2\right)^2=6\Rightarrow m=2\pm\sqrt{6}\)