Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
Theo định lí Viet thì \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1.x_2=\left(3m-3\right)^2\end{matrix}\right.\)
\(\dfrac{16}{9}.x_1.x_2=\dfrac{16}{9}.\left(3m-3\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left[\dfrac{4}{3}.\left(3m-3\right)\right]^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(4m-4\right)^2\)
⇒ \(\dfrac{16}{9}.x_1.x_2=\left(x_1+x_2-4\right)^2\)
Đối chiếu ⇒ \(\left\{{}\begin{matrix}a=-4\\b=\dfrac{16}{9}\end{matrix}\right.\)
⇒ \(\dfrac{b}{a}=\dfrac{-4}{9}\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Phương trình có 2 nghiệm khi \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=3\)
\(\Rightarrow\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=3\)
\(\Rightarrow\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2=5\)
\(\Rightarrow\left(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}\right)^2=5\)
\(\Rightarrow\left(m^2-2\right)^2=5\)
\(\Rightarrow m^2=2+\sqrt{5}\)
\(\Rightarrow m=\pm\sqrt{2+\sqrt{5}}\)
PT có 2 nghiệm \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)\ge0\)
\(\Leftrightarrow4m^2+8m+4-4m^2-8\ge0\\ \Leftrightarrow8m-4\ge0\Leftrightarrow m\ge\dfrac{1}{2}\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=8m-4\\ x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2m^2+8m\)
Ta có \(\left|x_1^4-x_2^4\right|=\left(x_1^2+x_2^2\right)\left|x_1-x_2\right|\left|x_1+x_2\right|\)
\(\Leftrightarrow\left|x_1^4-x_2^4\right|=\left(2m^2+8m\right)\sqrt{\left(x_1-x_2\right)^2}\left|2m+2\right|\\ =8\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}\)
Mà \(\left|x_1^4-x_2^4\right|=16m^2+64m=16\left(m^2+4m\right)\)
\(\Leftrightarrow\left(m^2+4m\right)\left|m+1\right|\sqrt{2m-1}-2\left(m^2+4m\right)=0\\ \Leftrightarrow\left(m^2+4m\right)\left(\left|m+1\right|\sqrt{2m-1}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(ktm\right)\\m=-4\left(ktm\right)\\\left|m+1\right|\sqrt{2m-1}=2\end{matrix}\right.\\ \Leftrightarrow\left(m+1\right)^2\left(2m-1\right)=4\\ \Leftrightarrow2m^3+3m^2-5=0\\ \Leftrightarrow2m^3-2m^2+5m^2-5=0\\ \Leftrightarrow2m^2\left(m-1\right)+5\left(m-1\right)\left(m+1\right)=0\\ \Leftrightarrow\left(m-1\right)\left(2m^2+5m+5\right)=0\\ \Leftrightarrow m=1\left(2m^2+5m+5>0\right)\left(tm\right)\)
Vậy \(m=1\) thỏa mãn đề bài