K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

a, \(\Delta=16m^2-4.\left(m-1\right)\left(4m+1\right)=16m^2-16m^2+12m+4=12m+4\)

pt có 2 nghiệm pb <=> \(\Delta>0\Leftrightarrow12m+4>0\Leftrightarrow m>-\frac{1}{3}\)

b ,pt có 2 nghiệm trái dấu <=>  \(\Delta>0;P<0\Leftrightarrow m>-\frac{1}{3};4m+1<0\Leftrightarrow m>-\frac{1}{3};m<-\frac{1}{4}\)

=> -1/3<m<-1/4

c, 

 

\(\)

 

 

a, Với m=2

\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)

Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

15 tháng 2 2019

cho phương trình x2(m+2)x+3m3=0  với x là ẩn, m là tham số 

15 tháng 2 2019

a,Với m = -1 thì pt trở thành

\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương 

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)

                            \(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5

\(\Rightarrow x_1^2+x_2^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)

\(\Leftrightarrow m^2+4m+4-6m+6=25\)

\(\Leftrightarrow m^2-2m-15=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)

Vậy m = 5