K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2021

a. Phương trình có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m+3\right)< 0\)

\(\Leftrightarrow-3< m< -1\)

b. Giả sử pt đã cho có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\x_1x_2=\dfrac{m+3}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\2x_1x_2=\dfrac{2m+6}{m+1}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+2x_1x_2=\dfrac{4m+4}{m+1}=4\)

Vậy \(x_1+x_2+2x_1x_2=4\) là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

20 tháng 4 2020

lo hbfbekef evef

frgrgthtgr

t

gr

grgrgrgfrgrf

r

g

rg

r

g

r

gr

f

r

r

br

g

r

gr

gr

grg

r

g

eh

h

h

t

tt

t

t

thr

htr

htht

rh

ththt

ht

ht

h

h

ht

ht

ht

h

frorgew

rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f

v

r

re

eb

tg

bet

eb

1 tháng 6 2020

\(\sqrt[]{}\)

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi mb) tìm m để 3.x1 + 2.x2 = 5m -16c) cho A= x1² + x2² + 6.x1.x2c.1) tìm m để A = -44c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.f) tìm m để phương...
Đọc tiếp

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m

b) tìm m để 3.x1 + 2.x2 = 5m -16

c) cho A= x1² + x2² + 6.x1.x2

c.1) tìm m để A = -44

c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.

d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.

e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.

f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.

g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.

h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.

i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.

j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.

k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²

l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.

m) tìm m để x1³ + x2³ <0

n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)

 

3
1 tháng 2 2022

TL :

Đề sai

\(x1^2\)là số gì

HT

1 tháng 2 2022

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

17 tháng 3 2019

\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)

Để pt có 2 nghiệm trái dấu thì 

\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)

27 tháng 4 2020

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)

NV
25 tháng 3 2022

\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

a.

\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)

\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)

\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)

\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)

\(P_{min}=32\) khi \(m=-3\)

b.

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)

Trừ vế cho vế:

\(x_1+x_2-x_1x_2=-8\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m