Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=m^2+2m+6=\left(m+1\right)^2+5>0\) ;\(\forall m\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-2m-6\end{matrix}\right.\)
Đặt \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(P=\left(-2m\right)^2-2\left(-2m-6\right)=4m^2+4m+12\)
\(P=\left(2m+1\right)^2+11\ge11\)
\(P_{min}=11\) khi \(m=-\dfrac{1}{2}\)
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
b)
Phương trình có nghiệm kép khi và chỉ khi
Δ = 0 ⇔ 4 m - 1 2 = 0 ⇔ m = 1
Khi đó nghiệm kép của phương trình là:
x = (-b)/2a = 2m/2 = m = 1
Để phương trình (1) có nghiệm thì:
\(\Delta'\ge0\Rightarrow\left(m-1\right)^2-\left(2m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-2m+5\ge0\)
\(\Leftrightarrow\left(m-2\right)^2+2\ge0\) (luôn đúng)
Vậy với \(\forall m\) thì phương trình (1) luôn có nghiệm.
Theo định lí Vi-et cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có: \(x_1< 2< x_2\Rightarrow\left\{{}\begin{matrix}x_1-2< 0\\x_2-2>0\end{matrix}\right.\)
\(\Rightarrow\left(x_1-2\right)\left(x_2-2\right)< 0\)
\(\Rightarrow x_1x_2-2\left(x_1+x_2\right)+4< 0\)
\(\Rightarrow2m-5-2.2\left(m-1\right)+4< 0\)
\(\Rightarrow2m-5-4m+4+4< 0\)
\(\Rightarrow-2m+3< 0\)
\(\Rightarrow m>\dfrac{3}{2}\)
1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Suy ra pt luôn có 2 nghiệm
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)
Đề sai r bạn
\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)
Vậy m=`7/4` thì A đạt GTNN
1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)
\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)
Do đó: Phương trình luôn có hai nghiệm
2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)
\(=\left(-2m\right)^2-7\left(2m-1\right)\)
\(=4m^2-14m+7\)
- Trước tiên ta tìm điều kiện của mm để phương trình đã cho có hai nghiệm phân biệt: x1,x2(Δ′>0)x1,x2(Δ′>0).
- Ta biến đổi biểu thức 2(x12+x22)−5x1x22(x12+x22)−5x1x2 về biểu thức có chứa x1+x2x1+x2 và x1x2x1x2 rồi từ đó ta tìm được giá trị của mm.
- Đối chiếu với điều kiện xác định của mm để tìm được giá trị thỏa mãn yêu cầu của bài toán.
a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)
nên phương trình ( 1 ) luôn có hai nghiệm phân biệt
b) PT ( 1 ) có hai nghiệm trái dấu
\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)
x 2 - 2mx + 2m – 1 = 0
Δ = b 2 - 4ac = 2 m 2 - 4.(2m - 1) = 4 m 2 -8m + 4 = 4 m - 1 2
Do Δ = 4 m - 1 2 ≥ 0 ∀ m nên phương trình luôn có nghiệm với mọi m