K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(2m-1)^2-4*2*(m-1)

=4m^2-4m+1-8m+8

=4m^2-12m+9=(2m-3)^2>=0

=>PT luôn có 2 nghiệm

4x1^2+4x2^2+2x1x2=0

=>4[(x1+x2)^2-2x1x2]+m-1=0

=>4[(-2m+1)^2/4-2*(m-1)/2]+m-1=0

=>(2m-1)^2-4(m-1)+m-1=0

=>4m^2-4m+1-3m+3=0

=>4m^2-7m+4=0

=>\(m\in\varnothing\)

27 tháng 2 2022

a, Thay m=2 vào pt ta có:
(1)\(\Leftrightarrow2x^2+\left(2.2-1\right)x+2-1=0\)

\(\Leftrightarrow2x^2+3x+1=0\\ \Leftrightarrow\left(2x^2+2x\right)+\left(x+1\right)=0\\ \Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=-1\end{matrix}\right.\)

b,\(\Delta=\left(2m-1\right)^2-4.2\left(m-1\right)=4m^2-4m+1-8\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9\)

Để pt có 2 nghiệm thì \(\Delta\ge0\Leftrightarrow4m^2-12m+9\ge0\left(luôn.đúng\right)\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(4x^2_1+4x^2_2+2x_1x_2=1\\ \Leftrightarrow4\left(x^2_1+x^2_2\right)+2.\dfrac{m-1}{2}=1\\ \Leftrightarrow4\left(x_1+x_2\right)^2-8x_1x_2+m-1=1\\ \Leftrightarrow4.\left(\dfrac{1-2m}{2}\right)^2-8.\dfrac{m-1}{2}+m-2=0\)

\(4.\dfrac{\left(1-2m\right)^2}{4}-4\left(m-1\right)+m-2=0\\ \Leftrightarrow4\left(1-4m+4m^2\right)-4m+4+m-2=0\\ \Leftrightarrow4-16m+16m^2-3m+2=0\\ \Leftrightarrow16m^2-19m+6=0\)

Ta có:\(\Delta=\left(-19\right)^2-4.16.6=361-384=-23< 0\)

Suy ra pt vô nghiệm

 

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:
Ta thấy $\Delta'=(m+1)^2-(2m+1)=m^2\geq 0$ nên pt luôn có nghiệm. 

Nghiệm của pt là:
$m+1-m=1$

$m+1+m=2m+1$

Nếu $x_1=1; x_2=2m+1$ thì:

$2x_1^2-x_2=1$

$\Leftrightarrow 2-(2m+1)=1$

$\Leftrightarrow 2m+1=1$

$\Leftrightarrow m=0$ (tm) 

Nếu $x_1=2m+1, x_2=1$ thì:

$2x_1^2-x_2=1$

$\Leftrightarrow 2(2m+1)^2-1=1$

$\Leftrightarrow (2m+1)^2=1$

$\Leftrightarrow 2m+1=\pm 1$

$\Leftrightarrow m=0$ hoặc $m=-1$

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)

\(=4m^2+12m+9-16m-8\)

\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Theo đề, ta có:

\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=4m+2\)

\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)

\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)

\(\Leftrightarrow40m^2-112m-98=0\)

\(\Leftrightarrow40m^2-140m+28m-98=0\)

=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)

=>(2m-7)(20m+14)=0

=>m=7/2 hoặc m=-7/10

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$

$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:

$x_1+x_2=2(m-1)$

$x_1x_2=-2m-1$

Khi đó:

$2x_1+3x_2+3x_1x_2=-11$

$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$

$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$

$\Leftrightarrow x_2=2m-4$

$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$

$-2m-1=x_1x_2=2(2m-4)$

$\Leftrightarrow -2m-1=4m-8$

$\Leftrightarrow 7=6m$

$\Leftrightarrow m=\frac{7}{6}$

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$

$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:

$x_1+x_2=2(m-1)$

$x_1x_2=-2m-1$

Khi đó:

$2x_1+3x_2+3x_1x_2=-11$

$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$

$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$

$\Leftrightarrow x_2=2m-4$

$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$

$-2m-1=x_1x_2=2(2m-4)$

$\Leftrightarrow -2m-1=4m-8$

$\Leftrightarrow 7=6m$

$\Leftrightarrow m=\frac{7}{6}$