Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Theo phương pháp MO-Huckel. Ta dễ dàng xđ đc định thức thế kỷ:
D = \(\begin{matrix}x&1&0&0\\1&x&1&0\\0&1&x&1\\0&0&1&x\end{matrix}\)=> hệ phương trình thế kỷ : \(\begin{cases}xC_1+C_2=0\\C_1+xC_2+C_3=0\\C_2+xC_3+C_4=0\\C_3+xC_4=0\end{cases}\)
b. D = 0 \(\Leftrightarrow\)D= x4-3x2+1 = 0 \(\Leftrightarrow\begin{cases}x_1=-1,618\\x_2=-0,618\\x_3=0,618\\x_4=1,618\end{cases}\)
Thay các giá trị x1,x2,x3,x4 vào biểu thức tính năng lượng \(E=\alpha-x\beta\) ta sẽ thu đc 4 mức năng lượng electron \(\pi\).
\(\begin{cases}E_1=\alpha+1,618\beta\\E_2=\alpha+0,618\beta\\E_3=\alpha-0,618\beta\\E_4=\alpha-1,618\beta\end{cases}\)
ta có \(\psi=c_1\phi_1+c_2\phi_2+c_3\phi_3+c_4\phi_4\)
để xác định các hàm \(\psi\) ta phải tìm các hệ số ci trong biểu thức.
thay x1= -1,618 vào hệ phương trình thế kỷ ta được : \(\begin{cases}c_2=1,618c_1\\c_1+c_3=1,618c_2\\c_2+c_4=1,618c_3\\c_3=1,618c_4\end{cases}\)\(\Rightarrow\begin{cases}c_1=c_4\\c_2=c_3\end{cases}\)
kết hợp với điều kiện chuẩn hóa c12+c22+c32+c42=1 ta đc: c1=c4=0,372 và c2=c3=0,602
vậy khi x1= -1,618 ta có hàm MO tương ứng là: \(\psi_1=0.372\phi_1+0.602\phi_2+0.602\phi_3+0.372\phi_4\)
Làm tương tự với x2,x3,x4 ta sẽ thu đc \(\psi_2,\psi_3,\psi_4\)
Vậy 4 MO là : \(\begin{cases}\psi_1=0.372\phi_1+0.602\phi_2+0.602\phi_3+0.372\phi_4\\\psi_2=0.602\phi_1+0.372\phi_2-0.372\phi_3-0.602\phi_4\\\psi_3=0.602\phi_1-0.372\phi_2-0.372\phi_3+0.602\phi_4\\\psi_4=0.372\phi_1-0.602\phi_2+0.602\phi_3-0.372\phi_4\end{cases}\)
TL:
Đọc Giáo trình Hóa lý (Cấu tạo phân tử và liên kết hóa học), tác giả Nguyễn Văn Xuyến, nhà xuất bản Khoa học và Kỹ thuật, trang 124 đến 130.
phần a là mình tính tích phân từ 0-3 của hàm đấy bình phương ạ
còn phần b làm như thế nào ạ, thầy có thể hướng dẫn không ạ
thưa thầy phần a xác suất sẽ bằng tích phân của bình phương hàm sóng cận từ 0 đến 3, nhưng do cận bằng 0 tích phân không xác định nên em không tính được ạ. còn đây là phần b ạ
He là nguyên tử nhiều electron vì vậy ngoài tương tác của electron với hạt nhân còn có tương tác giữa các electron với nhau. Làm cho e bây giờ chuyển động trong trường không đối xứng cầu như xét ở nguyên tử hidro, việc giải phương trình Schrodinger với nhiều biến số không thể chính xác nên ta sẽ giải phương trình với mô hình gần đúng, mô hình hệ n electron độc lập. Trước tiên ta đi xây dựng phương trình Schrodinger cho nguyên tử He để thấy việc giải quyết trực tiếp nó là khó khăn
a) Xét toàn hệ He gồm 1 hạt nhân và 2 electron,
Phương trình Schrodinger có dạng: \(\widehat{H}\Psi=E\Psi\) trong đó:
\(\widehat{H}=\widehat{T}+U\) là toán tử năng lượng toàn phần với
+) \(\widehat{T}=\sum\limits^2_{i=1}-\frac{h^2}{8\pi^2m_e}\left(\frac{\partial^2}{\partial x^2_i}+\frac{\partial^2}{\partial y^2_i}+\frac{\partial^2}{\partial z^2_i}\right)\) là toán tử động năng
+) U là thế năng của hệ bao gồm \(\begin{cases}u_{1a}=-\frac{2e^2}{r_{1a}}\\u_{2a}=-\frac{2e^2}{r_{2a}}\\u_{12}=\frac{e^2}{r_{12}}\end{cases}\) , \(u_{1a},u_{2a},u_{12}\) lần lượt là thế năng hút giữa hạt nhân a và electron 1, thế năng hút giữa hạt nhân a và electrong 2, thế năng đẩy của 2 electron với nhau
\(r_{1a},r_{2a}\) lần lượt là khoảng cách giữa hạt nhân a với electron 1 và electron 2, \(r_{12}\) khoảng cách giữa 2 elecron với nhau.
\(\Psi\) là hàm sóng toàn phần của hệ phụ thuộc vào bán kính vecto của tất cả các electron trong hệ với He là \(\Psi\left(\vec{r_1},\vec{r_2}\right)\)
Vậy sau khi thay vào ta được phương trình Schrodinger của nguyên tử He như sau:
\(\left[-\frac{h^2}{8\pi^2m_e}\left(\frac{\partial^2}{\partial x_1}+\frac{\partial^2}{\partial y_1}+\frac{\partial^2}{\partial z_1}+\frac{\partial^2}{\partial x_2}+\frac{\partial^2}{\partial y_2}+\frac{\partial^2}{\partial z_2}\right)+\left(-\frac{2e^2}{r_{1a}}-\frac{2e^2}{r_{2a}}+\frac{e^2}{r_{12}}\right)\right]\Psi=E\Psi\)
b, Việc bây giờ là ta đi giải phương trình đã thành lập ở câu a để tìm biểu thức năng lượng E và hàm sóng \(\Psi\)
ta có thể thấy đây là phương trình vi phân cấp 2 rất khó giải quyết vì vậy ta phải giả thiết rằng 2 e chuyển động độc lập trong trường thế tạo bởi hạt nhân, và vì vậy trường thế này là trường đối xứng cầu.Ta bỏ qua thế tương tác giữa 2 e là \(u_{12}\) .Do đó có thế viết:
\(\widehat{H}=\widehat{H_1}+\widehat{H_2}\)
\(E=E_1+E_2\)
Mỗi e chuyển động trong hệ như vậy ứng với một phương trình Schrodinger
\(\widehat{H}_i\psi_i\left(\vec{r_i}\right)=E_i\psi_i\left(\vec{r_i}\right)\) với \(\widehat{H_i}=-\frac{h^2}{8\pi^2m_e}\left(\frac{\partial}{\partial x_i}+\frac{\partial}{\partial y_i}+\frac{\partial}{\partial z_i}\right)-\frac{2e^2}{r_{ia}}\), i=1,2 hàm sóng \(\psi_i\left(\vec{r_i}\right)\) mô tả trạng thái mỗi electron độc lập i trong nguyên tử.
Vậy việc giải các phương trình này tương tự giống phương trình Schrodinger cho nguyên tử hệ 1 e mà ta đã biết.
Và ta có năng lượng của e ở quỹ đạo n trong nguyên tử He là \(E_n=-\frac{2\pi^2m_ee^4}{h^2}\frac{Z^2}{n^2}=-\frac{8\pi^2m_ee^4}{h^2}\frac{1}{n^2}\) theo đơn vị erg với \(1erg=0.624146.10^{12}eV\)
quy đổi ra eV ta có \(E_n=-13.6\frac{4}{n^2}eV\)
Hàm sóng toàn phần \(\Psi\left(\vec{r_1,}\vec{r_2}\right)=\psi_{n_1,l_1,m_1}\left(\vec{r_1}\right)\psi_{n_2,l_2,m_2}\left(\vec{r_2}\right)\) trong đó các hàm sóng thành phần thu được nhờ việc giải từng phương trình. Ở đây việc giải phương trình cho từng hệ 1e trong tọa độ cầu đã thu được kết quả \(\psi_{n,l,m}\left(r,\Theta,\varphi\right)=R_{n,l}\left(r\right)\Theta_{l,m}\left(\theta\right)\Phi_m\left(\varphi\right)\), trong đó \(R_{n,l}\left(r\right)\) là hàm chỉ phụ thuộc r, gọi là hàm bán kính, chứa các tham số n, \(l\) mà ta gọi là số lượng tử chính n và số lượng tử orbita \(l\).
các hàm \(\Theta,\Phi\) phụ thuộc các góc \(\theta,\varphi\) nên gọi là hàm góc, chứa các tham số \(l,m\) ở đây m được gọi là số lượng tử từ.
a)\(\widehat{H}\)=\(\widehat{T}\)+U
\(^{ }_{ }\widehat{T}\)=\(\frac{-h^2}{8m\pi^2}\)(\(\Delta_1^2\)+\(\Delta_2^2\))
\(\Delta_1^2\)=\(\frac{\partial^2}{\partial x_1^2}\)+\(\frac{\partial^2}{\partial y_1^2}\)+\(\frac{\partial^2}{\partial z^2_1}\)
\(\Delta_2^{2_{ }}\)=\(\frac{\partial^2}{\partial x_2^2}\)+\(\frac{\partial^2}{\partial y_2^2}\)+\(\frac{\partial^2}{\partial z^2_2}\)
U=-\(\frac{2e^2}{r_{1a}}\)-\(\frac{2e^2}{r_{2a}}\)+\(\frac{2e^2}{r_{12}}\)
trong đó: r1a là khoảng cách từ e1 đến hạt nhân He
r2a là khoảng cách từ e2 đến hạt nhân He
r12 là khoảng cách giữa 2 e
\(\Rightarrow\)Pt schrodinger của nguyên tử He ở trạng thái dừng:
+\(\frac{\partial^2}{\partial z^2_2}\))- 2e2(\(\frac{1}{r_{1a}}\)+\(\frac{1}{r_{2a}}\)-\(\frac{1}{r_{12}}\))] \(\Psi\)=E\(\Psi\)
b)Giải pt khi giả thiết bỏ qua lực đẩy 2 e:
U=-\(\frac{2e^2}{r_{1a}}\)-\(\frac{2e^2}{r_{2a}}\)
E=\(\frac{-2\pi^2z^2m_ee^4}{h^2n^2}\)=\(\frac{-2\pi^2\cdot2^2m_ee^4}{h^2}\)=\(\frac{-8\pi^2m_ee^4}{h^2}\)(eV)
a, Ta có:
Hai hàm sóng trực giao nhau khi \(I=\int\psi_{1s}.\psi_{2s}d\psi=0\) \(\Leftrightarrow I=\iiint\psi_{1s}.\psi_{2s}dxdydz=0\)
Chuyển sang tọa độ cầu ta có: \(\begin{cases}x=r.\cos\varphi.sin\theta\\y=r.\sin\varphi.sin\theta\\z=r.\cos\theta\end{cases}\)
\(\Rightarrow\)\(I=\frac{a^3_o}{4.\sqrt{2.\pi}}\int\limits^{\infty}_0\left(2-\frac{r}{a_o}\right).e^{-\frac{3.r}{2.a_o}}.r^2.\sin\theta dr\int\limits^{2\pi}_0d\varphi\int\limits^{\pi}_0d\theta\)
\(=a^3_o.\sqrt{\frac{\pi}{2}}\)(.\(2.\int\limits^{\infty}_0r^2.e^{-\frac{3.r}{2.a_o}}dr-\frac{1}{a_o}.\int\limits^{\infty}_0r^3.e^{-\frac{3.r}{2.a_o}}dr\))
\(=a_o.\sqrt{\frac{\pi}{2}}.\left(2.I_1-\frac{1}{a_o}.I_2\right)\)
Tính \(I_1\):
Đặt \(r^2=u\); \(e^{-\frac{3r}{2a_o}}dr=dV\)
\(\Rightarrow\begin{cases}2.r.dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\) \(\Rightarrow I_1=-r^2.\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}+\frac{4.a_o}{3}.\int\limits^{\infty}_0r.e^{-\frac{3r}{2a_o}}dr\)\(=0+\frac{4a_o}{3}.I_{11}\)
Tính \(I_{11}\):
Đặt r=u; \(e^{-\frac{3r}{2a_o}}dr=dV\)\(\Rightarrow\begin{cases}dr=du\\-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\end{cases}\)\(\Rightarrow I_{11}=0+\frac{2a_0}{3}.\int\limits^{\infty}_0e^{-\frac{3r}{2a_o}}dr=\frac{4a^2_o}{9}\)
\(\Rightarrow2.I_1=2.\frac{4a_o}{3}.\frac{4a_o^2}{9}=\frac{32a^3_o}{27}\)
Tính \(I_2\):
Đặt \(r^2=u;e^{-\frac{3r}{2a_o}}dr=dV\) \(\Rightarrow\)\(3r^2dr=du;-\frac{2a_o}{3}.e^{-\frac{3r}{2a_o}}=V\)
\(\Rightarrow I_2=0+2.a_o.\int\limits^{\infty}_0r^2.e^{-\frac{3r}{2a_o}}dr\)\(\Rightarrow\frac{1}{a_o}.I_2=2a_o.\frac{16a^3_o}{27}.\frac{1}{a_o}=\frac{32a^3_o}{27}\)
\(\Rightarrow I=a^3_o.\sqrt{\frac{\pi}{2}}.\left(\frac{32a^3_o}{27}-\frac{32a^3_o}{27}\right)=0\)
Vậy hai hàm sóng này trực giao với nhau.
b,
Xét hàm \(\Psi_{1s}\):
Hàm mật độ sác xuất là: \(D\left(r\right)=\Psi^2_{1s}=\frac{1}{\pi}.a^3_o.e^{-\frac{2r}{a_o}}\)
\(\Rightarrow D'\left(r\right)=-\frac{2.a_o^2}{\pi}.e^{-\frac{2r}{a_o}}=0\)
\(\Rightarrow\)Hàm đạt cực đại khi \(r\rightarrow o\) nên hàm sóng có dạng hình cầu.
Xét hàm \(\Psi_{2s}\):
Hàm mật độ sác xuất: \(D\left(r\right)=\Psi_{2s}^2=\frac{a^3_o}{32}.\left(2-\frac{r}{a_o}\right)^2.e^{-\frac{r}{a_0}}\)\(\Rightarrow D'\left(r\right)=\left(2-\frac{r}{a_o}\right).e^{-\frac{r}{a_o}}.\left(-4+\frac{r}{a_o}\right)=0\)
\(\Rightarrow r=2a_o\Rightarrow D\left(r\right)=0\); \(r=4a_o\Rightarrow D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)
Vậy hàm đạt cực đại khi \(r=4a_o\), tại \(D\left(r\right)=\frac{a^3_o}{8}.e^{-4}\)
hai hàm trực giao: I=\(\int\)\(\Psi\)*\(\Psi\)d\(\tau\)=0
Ta có: I=\(\int\limits^{ }_x\)\(\int\limits^{ }_y\)\(\int\limits^{ }_z\)\(\Psi\)*\(\Psi\)dxdydz=0
=\(\int\limits^{ }_r\)\(\int\limits^{ }_{\theta}\)\(\int\limits^{ }_{\varphi}\)\(\Psi\)1s\(\Psi\)2sr2sin\(\theta\)drd\(\theta\)d\(\varphi\)
=\(\int\limits^{\infty}_0\)\(\int\limits^{\pi}_0\)\(\int\limits^{2\pi}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2sin\(\theta\)drd\(\theta\)d\(\varphi\)
=C.\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr.\(\int\limits^{\pi}_0\)sin\(\theta\)\(\int\limits^{2\pi}_0\)d\(\varphi\)
với C=\(\frac{1}{4\sqrt{2\pi}}\)a0-3
Xét tích phân: J=\(\int\limits^{\infty}_0\)(2-\(\frac{r}{a_0}\)).e-3r/a0r2dr
=\(\int\limits^{\infty}_0\)(2r2- \(\frac{r^3}{a_0}\)).e-3r/a0dr
=\(\int\limits^{\infty}_0\)(2r2- \(\frac{r^3}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a0
=\(\frac{-2a_0}{3}\).((2r2-\(\frac{r^3}{a_0}\))e-3r/a0\(-\)\(\int\)(4r-\(\frac{3r^2}{a_0}\))e-3r/adr)
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 - \(\int\)(4r-\(\frac{3r^2}{a_0}\)).\(\frac{-2a_0}{3}\)de-3r/a)
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0 - \(\int\)(4 - \(\frac{6r}{a_0}\))e-3r/a0dr))
=\(\frac{-2a_0}{3}\)((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0- \(\int\)(4 - \(\frac{6r}{a_0}\))\(\frac{-2a_0}{3}\).de-3r/a0))
=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\)e-3r/a0dr)))
=\(\frac{-2a_0}{3}\)(((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 + \(\int\)(\(\frac{6}{a_0}\).\(\frac{-2a_0}{3}\)de-3r/a0)))
=\(\frac{-2a_0}{3}\)((((2r2-\(\frac{r^3}{a_0}\))e-3r/a0 +\(\frac{2a_0}{3}\).((4r-\(\frac{3r^2}{a_0}\))e-3r/a0+\(\frac{2a_0}{3}\)((4-\(\frac{6r}{a_0}\)).e-3r/a0 - 4.e-3r/a0))))
Các bạn chú ý, khi tính ra E(\(\pi\)) = 1,7085.10-18 thì đơn vị là J2s2/kg.m2 chứ không phải là đơn vị (J), sau đó nhân với NA và nhân với 10-3 thì mới ra được kết quả là 1,06.103 kJ/mol.
bạn có ghi bài trên lớp phần cấu tạo chất đủ không. co mình mượn chép lại mấy bài phần đó với
Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này:
Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:
\(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)
Không biết đúng không có gì sai góp ý nhé!!
a. pt S ở trạng thái dừng:
\(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0
đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:
U=-\(\frac{Z^2_e}{r}\)
\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:
\(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0
b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)
ta có : \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)
\(\rightarrow\)Hằng số Rydberg:
Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)
vạch màu lam:n=3 ; n'=4
Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.103 m-1=109710 cm-1.
c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)
Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))
=109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.
Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:
En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.
mũi tên đỏ đế chỉ đọc từ dưới lên trên trong mỗi bức tranh