K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2022

\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)

\(a,\) Điều kiện xác định: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

\(b,A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)

\(=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}+\dfrac{18}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{4}{x-3}\)

\(c,x=1\Rightarrow A=\dfrac{4}{1-3}=-2\)

4 tháng 1 2022

a) \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

a) \(ĐKXĐ:\) x khác + 3

\(b,P=\dfrac{3\left(x-3\right)+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(P=\dfrac{4}{x-3}\)

c) \(P=4=\dfrac{4}{x-3}=4=x-3=1=x=4\)

a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)

b: \(P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\)

c: Để P=4 thì x-3=1

hay x=4

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{x-2}\)

18 tháng 12 2017

bao thay Sang do

18 tháng 12 2017

là sao

5 tháng 2 2022

biểu thức lỗi ròi á

bạn ghi lại đề đi bạn

27 tháng 12 2020

a) ĐKXĐ: \(x\notin\left\{3;-3;-2\right\}\)

Ta có: \(P=\left(\dfrac{2x-1}{x+3}-\dfrac{x}{3-x}-\dfrac{3-10x}{x^2-9}\right):\dfrac{x+2}{x-3}\)

\(=\left(\dfrac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{3-10x}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x+2}{x-3}\)

\(=\dfrac{2x^2-6x-x+3+x^2+3x-3+10x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)

\(=\dfrac{3x^2+6x}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+2}{x-3}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x-3}{x+2}\)

\(=\dfrac{3x}{x+3}\)

b) Ta có: \(x^2-7x+12=0\)

\(\Leftrightarrow x^2-3x-4x+12=0\)

\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=4\left(nhận\right)\end{matrix}\right.\)

Thay x=4 vào biểu thức \(P=\dfrac{3x}{x+3}\), ta được: 

\(P=\dfrac{3\cdot4}{4+3}=\dfrac{12}{7}\)

Vậy: Khi \(x^2-7x+12=0\) thì \(P=\dfrac{12}{7}\)

10 tháng 3 2020

\(a,\)\(đkxđ\)\(\hept{\begin{cases}3+2x\ne0\\3-2x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-\frac{3}{2}\\x\ne\frac{3}{2}\end{cases}}}\)

\(b,\)\(A=\left(\frac{1}{3+2x}+\frac{1}{3-2x}\right):\frac{1}{3+2x}\)

\(=\left(\frac{3-2x+3+2x}{\left(3-2x\right)\left(3+2x\right)}\right).\frac{3+2x}{1}\)

\(=\frac{6\left(3+2x\right)}{\left(3-2x\right)\left(3+2x\right)}=\frac{6}{3-2x}\)

\(c,\)Tại x = 3 \(\Rightarrow A=\frac{6}{3+2.3}=\frac{6}{9}=\frac{2}{3}\)