Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+\(\frac{a}{b}=1\Leftrightarrow a=b\Leftrightarrow\frac{a}{b}=\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow\frac{a}{b}-1=\frac{a-b}{b}>\frac{a-b}{b+2016}=\frac{a+2016}{b+2016}-1\)=> \(\frac{a}{b}>\frac{a+2016}{b+2016}\)
+\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow1-\frac{a}{b}=\frac{b-a}{b}>\frac{b-a}{b+2016}=1-\frac{a+2016}{b+2016}\)=>\(\frac{a}{b}< \frac{a+2016}{b+2016}\)
Ta có: \(\frac{a}{b+2016}< \frac{a}{b}\) và \(\frac{2016}{b+2016}< \frac{a}{b}\)
=> \(\frac{a}{b+2016}+\frac{2016}{b+2016}< \frac{a}{b}\)
hay \(\frac{a+2016}{b+2016}< \frac{a}{b}\)
n
nếu a>b hay a/b > 1 ta có 2016a > 2016b
=> 2016a + ab > 2016b + ab
=> a ( 2016 + b) > b ( 2016 + a )
=> a/b > a+2016/b+2016
tương tự với 2 trường hợp
nếu a < b thì a/b < a+2016/b+2016
nếu a = b thì a/b = a+2016/b+2016
\(a>b\Rightarrow a+2016>b+2016\)
\(\Rightarrow\frac{a}{b}=\frac{b+a-b}{b}\)
\(\Rightarrow\frac{a+2016}{b+2016}=\frac{b+2016+a+2016-b+2016}{b+2016}=\frac{b+a-a}{b+2016}\)
Vì: \(\frac{b+a-a}{b}>\frac{b+a-b}{b+2016}\)
\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)
Ta có:
- \(\frac{a}{b}=\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)
\(=\frac{ab+2016a}{b\left(b+2016\right)}\)
- \(\frac{a+2016}{b+2016}=\frac{b\left(a+2016\right)}{b\left(b+2016\right)}\)
\(=\frac{ab+2016b}{b\left(b+2016\right)}\)
Vì \(a>b\Rightarrow2016a>2016b\)
\(\Rightarrow ab+2016a>ab+2016b\)
\(\Rightarrow\frac{ab+2016a}{b\left(b+2016\right)}>\frac{ab+2016b}{b\left(b+2016\right)}\)
\(\Rightarrow\frac{a}{b}>\frac{a+2016}{b+2016}\)
Xét hiệu:
\(H=\frac{a}{b}-\frac{a+2016}{b+2016}=\frac{a\cdot\left(b+2016\right)-\left(a+2016\right)\cdot b}{b\left(b+2016\right)}=\frac{2016\cdot\left(a-b\right)}{b\left(b+2016\right)}.\)
- Nếu b<-2016 và a>b thì H>0; a<b thì H<0
- -2016<b<0 và a>b thì H<0; a<b thì H>0
- Nếu b>0 và a>b thì H>0; a<b thì H<0
tùy H>0 hay H<0 mà ta biết được kq của sự so sánh.
Hay mình làm cụ thể hơn cho bạn dễ hiểu
Ta có \(\frac{a}{b}-1=\frac{a}{b}-\frac{b}{b}=\frac{a-b}{b}\)
\(\frac{a+2016}{b+2016}-1=\frac{a+2016}{b+2016}-\frac{b+2016}{b+2016}=\frac{a+2016-b-2016}{b+2016}=\frac{a-b}{b+2016}\)
So sánh nứa là ra ok bạn
A+2016/B+2016=A/B+2016/2016=A/B+1
=)A/B<A/B+1
=)A/B<A+2016/B+2016
nek sao bn kì z? giúp ng ta thì giúp cho đàng hoàng nhá. bn ns dài lắm lak xog ak???
Quy đồng mẫu số:
\(\frac{a}{b}\)= \(\frac{a\left(b+2001\right)}{b\left(b+2001\right)}\)=\(\frac{ab+2001a}{b\left(b+2001\right)}\)
\(\frac{a+2001}{b+2001}\)=\(\frac{\left(a+2001\right)b}{\left(b+2001\right)b}\)=\(\frac{ab+2001b}{b\left(b+2001\right)}\)
Vì b>0 nên mẫu số của 2 phân số trên dương.Chỉ cần so sánh tử số
so sánh ab+2001a vớiab+2001b
-Nếu a<b =>Tử số phân số thứ nhất < tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
-Nếu a=b => 2 phân số bằng 1
-Nếu a>b => tử số phân số thứ nhất lớn hơn tử số phân số thứ 2
=> \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
Ta có:
( a + 2001 ) .b = a.b + b.2001 ( 1 )
( b . 2001 ) . a = a.b + a.2001 ( 2 )
Xét 3 trường hợp :
TH1: a=b
Từ ( 1 ) và ( 2 ) => b.2001 = a.2001 => a.b + b.2001 = a.b + a.2001 => ( a + 2001 ) .b = ( b + 2001 ) .a => \(\frac{a}{b}\)= \(\frac{a+2001}{b+2001}\)
TH2: a<b
Từ ( 1 ) và ( 2 ) => b.2001 > a.2001 => a.b + b.2001 > a.b + a.2001 => ( a + 2001 ) .b > ( b + 2001 ) .a => \(\frac{a}{b}\)< \(\frac{a+2001}{b+2001}\)
TH3: a>b
Từ ( 1 ) và ( 2 ) => b.2001 < a.2001 => a.b + b.2001 < a.b + a.2001 => ( a + 2001 ) .b < ( b + 2001 ) .a => \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
ủng hộ nhé
Ta có:
\(\frac{a}{b}\)= \(\frac{a\left(b+2016\right)}{b\left(b+2016\right)}\)=\(\frac{ab+2016a}{b\left(b+2016\right)}\)
\(\frac{a+2016}{b+2016}\)=\(\frac{\left(a+2016\right)b}{\left(b+2016\right)b}\)=\(\frac{ab+2016b}{b\left(b+2016\right)}\)
Vì b > 0 nên mẫu số của hai phân số trên dương. Ta so sánh tử số.
* Nếu a < b => ab+2016a < ab+2016b
=> \(\frac{a}{b}\)<\(\frac{a+2016}{b+2016}\)
* Nếu a = b => ab+2016a = ab+2016b
=> \(\frac{a}{b}\)=\(\frac{a+2016}{b+2016}\)
* Nếu a > b => ab+2016a > ab+2016b
=> \(\frac{a}{b}\)>\(\frac{a+2016}{b+2016}\)
Giả sử a/b = 1/3 còn phân số kia là 2017/2019
quy đồng 1/3 = 2017/6051
Vì 6051>2019 nên 2017/2019 > 2017/6051 và 2017/2019>1/3
Vậy \(\frac{a}{b}< \frac{a+2016}{b+2016}\)