Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{3n-1}{n+2}=\frac{3\left(n+2\right)-6}{n+2}=3-\frac{6}{n+2}\)
Để A có giá trị nguyên <=> 6 \(⋮\)n + 2
<=> n + 2 \(\in\)Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
lập bảng :
n + 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
Vậy ...
a)Để a có giá trị nguyên thì \(\left(n+1\right)⋮\left(n-2\right)\)
\(\Rightarrow\left[\left(n+1\right)-\left(n-2\right)\right]⋮\left(n-2\right)\)
\(\Rightarrow\left(n+1-n+2\right)⋮\left(n-2\right)\)
\(\Rightarrow3⋮\left(n-2\right)\)
\(\Rightarrow n-2\in\){1;3;-1;-3}
\(\Rightarrow n\in\){3;5;1;-1}
Vậy với n\(\in\){3;5;1;-1} thì a có giá trị nguyên.
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Để A là số nguyên thì n + 1 chia hết n - 2
<=> n - 2 + 3 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư(3) = {-3;-1;1;3}
=> n = {-1;1;3;5}
a) De a co gia tri la so nguyen =>n+1chia het cho n-2
Mả n-2chia het n-2
=>n+1-(n-2)chia hết n-2
=>n+1-n+2chia hết n-2 =>3 chia hết cho n -2
=> n-2 thuộc Ư(3)={-1;1;3;-3}