K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

b)Gọi U7CLN(4n+1;6n+1)=b

ta có : 4n+1 chia hết cho b ; 6n+1 chia hết cho b

suy ra : 3(4n+1) chia hết cho b : 2(6n+1) chia hết cho b

suy ra : [3(4n+1)-2(6n+1)] chia hết cho b

[(12n+3)-(12n+2)] chia hết cho b

12n+3-12n-2 chia hết cho b

suy ra : 1 chia hết cho b nên b=1

suy ra ƯCLN(4n+1;6n+1)=1

suy ra : 4n+1/6n+1 là phân số tối giản

7 tháng 3 2018

Giúp mk vs mk tk 5 lun

6 tháng 8 2017

2n+1/4n+1

Gọi d là ƯC của 2n+1 và 4n+1

=> d=2n+1 :4n+1

=> (2n+1: 4n+1 ): d

=>[ 2.(2n+1)-1.(4n+1)]

=>4n+2-4n-1

=>d=1

Vậy phân số trên là phân số tối giản

31 tháng 8 2021

A=5-2n/6n+1 nha mn

14 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

15 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

19 tháng 8 2020

Ko ai giúp mình à

Mình cần gấp

Mong các anh chị giúp minh

19 tháng 8 2020

đdddddddddddddddddddddddddddddddd

\(\dfrac{n^3+5n+1}{n^4+6n^2+n+5}=\dfrac{n^3+5n+1}{n\left(n^3+5n+1\right)+n^2+1}=1+\dfrac{1}{n^2+1}\)

\(\dfrac{1}{n^2+1}\)là phân số tối giản nên\(\frac{n^3+5n+1}{n^4+6n^2+n+5}\)là phân số tối giản(đpcm)

19 tháng 7 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)

\(1-\frac{1}{\left(2n+3\right)}\)

cách làm này ko biết sai hay đúng nên hãy cẩn thận

19 tháng 7 2018

hơi khó bn ơi

17 tháng 8 2016

Gọi d là ƯCLN(12n+1;30n+2)

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

           \(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà \(n\in N\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản              ĐPCM

17 tháng 8 2016

Giải:

Gọi d = UCLN ( 12n + 1; 30n + 2 )

Ta có: 

\(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)

\(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)

Vì \(d\in N\) nên d = 1

Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.

\(\Rightarrowđpcm\)