Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
Gọi d là ƯC (12, 5-3n) \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}12⋮d\\5-3n⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}12⋮d\\10-6n⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}22-6n⋮d\left(1\right)\\5-3n⋮d\end{cases}}}\)
Xét (1) có: \(2.\left(11-3n\right)⋮d\Leftrightarrow\orbr{\begin{cases}2⋮d\\11-3n⋮d\end{cases}}\)
-Nếu \(2⋮d\)thì d=1 hoặc d=2. Mà A là p/s tối giản => \(d\ne2\)<=> 5n-3 không chia hết cho 2 <=> 4 + (1-3n) không chia hết cho 2
=> 1-3n không chia hết cho 2 => 3n chia hết cho 2 => n chia hết cho 2
- Nếu \(11-3n⋮d\)thì: \(\left(11-3n\right)-\left(5-3n\right)⋮d\Leftrightarrow6⋮d\Rightarrow d\in\left\{1,2,3\right\}\)
Vì A là p/s tối giản => \(d\ne2,d\ne3\)
+ Nếu \(d\ne2\)thì làm tương tự như trên có: \(n⋮2\)
+ Nếu \(d\ne3\)thì 5-3n không chia hết cho 3 (luôn đúng)
Vậy để A là ps tối giản thì \(n⋮2\)
\(A=\frac{3n+7}{5-3n}=\frac{12-\left(5-3n\right)}{5-3n}=\frac{12}{5-3n}-1\\ \)
A là phân số tối giản thì \(\frac{12}{5-3n}\)là phân số tối giản. Sau đó làm tiếp nhé
Xét : \(A=\frac{3n+7}{5-3n}=\frac{3n-5+12}{-\left(3n-5\right)}=\frac{3n-5}{-\left(3n-5\right)}+\frac{12}{-\left(3n-5\right)}\)
\(=-1+\frac{12}{5-3n}\)Vậy để A có giá trị nguyên thì \(5-3n\inƯ\left(12\right)\Rightarrow5-3n\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}\)
Bạn lập bảng ra sau đó tính các giá trị của n để phân số trên là phân số nguyên tức là phân số có thể rút gọn được
Cho phân số A = 3n + 7/5-3n
Tìm?""""""""" điều kiện"""""""" để A la phân số tối giản
Đúng mk tick cho
A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)
a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 8 | -2 | 13 | -7 | 23 | -17 |
Vậy...
b, Để A tối giản <=> UCLN(20,n-3) = 1
=> n-3 không chia hết cho 20
=> n-3 khác 20k (k thuộc Z)
=> n khác 20k + 3
Vậy.....
a) Ta có :
\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên
\(\Rightarrow14\)\(⋮\)\(n-3\)
\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }
lập bảng ta có :
n - 3 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 4 | 2 | 5 | 1 | 10 | -4 | 17 | -11 |
b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1
\(\Leftrightarrow\)n - 3 không chia hết cho 14
\(\Rightarrow\)n - 3 \(\ne\)14k
\(\Rightarrow\)n \(\ne\)14k + 3