Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
Bài 3:
a, A= n+3 / n-1
A = n-1+4 / n-1
A = 1 + 4/n-1
Để A là số nguyên thì 4/n-1 nguyên
=>4 chia hết n-1
=> n-1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {2;0;3;-1;4;-3}
b, B = 2n+3 / n-1
B = 2(n-1) + 5 / n-1
B= 2 + 5/n-1
Để B nguyên thì 5/n-1 nguyên
=> 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={1;-1;5;-5}
=> n thuộc {2;0;6;-4}
a/b = c/d => 1 - a/b = 1 - c/d
=> b/b - a/b = d/d - c/d
=> (b - a)/b = (d - c)/d
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{-a}{b}=\frac{-c}{d}\)
\(\Rightarrow1+\frac{-a}{b}=1+\frac{-c}{d}\)
\(\Rightarrow\frac{b-a}{b}=\frac{d-c}{d}\left(dpcm\right)\)
Vì \(\dfrac{a}{b}-\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad-bc}{bd}=\dfrac{ac}{bd}\)
\(\Rightarrow ad-bc=ac\)
\(\Rightarrow ad=ac+bc\)
\(\Rightarrow ad=c\left(a+b\right)\)
\(\Rightarrow\dfrac{c}{d}=\dfrac{a}{a+b}\)