Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
- \(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)
- \(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)
- \(n+3=2\Rightarrow x=2-3=-1\in Z\)
- \(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)
Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
b)ta có để \(\frac{2n+2}{2n}\) là số nguyên thì
2n+2 chia hết cho 2n
vì 2n chia hết cho 2n nên 2chia hết cho2n
nên 2 thuộc bội của 2n
nên 2n = -2 hoặc 2
nên n= -1 hoặc 1
nhớ bấm đúng nhé
còn câu A thì sao giúp mình lun đi bạn , câu B bạn có thể giải thích rõ dùm mình được không
ta có
+ ) để B thuộc Z thì 10n phải chia hết cho 5n - 3
+ ) và 5n - 3 chia hết cho 5n - 3 => 2.( 5n - 3 ) = 10n -6 chia hết cho 5n - 3
từ 2 điều kiện trên =>( 10n -6 ) - ( 10n ) chia hết cho 5n -3 ( áp dụng tính chất đồng dư tự kham khảo )
=> 6 chia hết cho 5 n - 3 => 5n - 3 thuộc ước của 6
th1) 5n - 3 = -6 => n ko có giá trị
th2) 5n - 3 = -3 => ...
th3) 5n -3 = -2 => ...
th4) 5n - 3 = -1 => ...
th5) 5n - 3 = 1 => ...
th6) 5n - 3 = 2 => ....
còn 2 th nua tu =>
Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!
a) 6/n + 2 rút gọn được
UCLN(6 , n + 2) > 1
Vậy khi UCLN( 6 , n + 2) thuộc U(6) = {-6 ; -3; -2 ; - 1 ; 1 ; 2 ; 3 ; 6}
b) 6 chia hết cho n + 2
n + 2 thuộc U(6) = {-6 ; -3 ; -2 ; - 1 ; 1; 2; 3; ;6}
Vậy n thuộc {-8 ; -5 ; -4 ; -3 ; -1 ; 0 ; 1 ; 4}