Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có: \(\frac{a}{b}\)(a, b \(\inℕ^∗\)) là phân số tối giản
Suy ra ƯCLN (a, b) = 1
Gọi ƯCLN (a, b) là d
Ta có: a \(⋮\)d; b\(⋮\)d; d = 1
Suy ra b - a \(⋮\)d và b \(⋮\)d
Mà d = 1 (d là ƯCLN (a, b)
Nên \(\frac{b-a}{b}\)cũng là phân số tối giản.
Vậy...
a, Giả sử \(\frac{a+b}{b}\)không tối giản thì tử và mẫu có ước chung \(d\ne\pm1\), suy ra \((a+b)⋮d;b⋮d(1)\)
\((a+b)⋮d\)nên \(\left[(a+b)-b\right]⋮d\), do đó \(a⋮d(2)\)
Từ 1 và 2 suy ra \(\frac{a}{b}\)không tối giản . Vậy : \(\frac{a+b}{b}\)là phân số tối giản
b, Giải thích tương tự như câu a nhé :v
a) Giả sử \(\frac{a+b}{b}\)không tối giản thì tủ và mẫu có ước chung d \(\ne\)+1 , -1 suy ra (a + b ) \(⋮\)d,b \(⋮\)d (1) Nên (a+b) - b \(⋮\)d , do đó a \(⋮\)d (2)
Từ 1 và 2 ta có \(\frac{a}{b}\)không tối giản ( điều này trái với đầu bài)
Vậy \(\frac{a+b}{b}\)là phân số tối giản
b) Giải thích tương tự như câu a
\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.
Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^
Thử làm vậy không biết được không.
\(\frac{a+b}{b}=\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1\)
\(\Rightarrow\frac{a+b}{b}toigian\)
\(\frac{a+b}{b}=\frac{a}{b}+1\\ \frac{a}{b}tg=>\frac{a+b}{b}tg\)