Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(AB\right)=P\left(A\right)+P\left(B\right)-P\left(A\right)P\left(B\right)\)
\(=0,6+0,3-0,18=0,72\)
b) \(P\left(\overline{A}\cup\overline{B}\right)=1-P\left(AB\right)=1-0,18=0,82\)
Gọi \(A\left(x;y\right)\) là 1 điểm thuộc (C)
Phép tính tiến theo \(\overrightarrow{v}\) biến A thành \(A'\left(x';y'\right)\) \(\Rightarrow A'\in\left(C'\right)\)
\(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-a\\y=y'-b\end{matrix}\right.\)
Thay vào pt (C):
\(y'-b=-\left(x'-a\right)^3+1\)
\(\Leftrightarrow y'=-x'^3+3ax'^2-3a^2x'+a^3+b\)
Đồng nhất hệ số với pt (C') ta được: \(\left\{{}\begin{matrix}3a=3\\-3a^2=-3\\a^3+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow ab=2\)
Phép thử T được xét là: "Hai xạ thủ cùng bắn vào bia".
Theo đề ra ta có = "Người thứ k không bắn trúng", k = 1, 2. Từ đó ta có:
a) A = "Không ai bắn trúng" = "Người thứ nhất không bắn trúng và người thứ hai không bắn trúng". Suy ra A = . .
Tương tự, ta có B = "Cả hai đều bắn trúng" = . .
Xét C = "Có đúng một người bắn trúng", ta có C là hợp của hai biến cố sau:
"Người thứ nhất bắn trúng và người thứ hai bắn trượt" = A1 . .
"Người thứ nhất bắn trượt và người thứ hai bắn trúng" = . A2 .
Suy ra C = A1 . ∪ . A2 .
Tương tự, ta có D = A1 ∪ A2 .
b) Gọi là biến cố: " Cả hai người đều bắn trượt". Ta có
= . = A.
Hiển nhiên B ∩ C = Φ nên suy ra B và C xung khắc với nhau.