K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

C,D thuộc (P) nên \(C\left(x_1;x_1^2-4x_1-5\right);D\left(x_2;x_2^2-4x_2-5\right)\)

ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\overrightarrow{AB}=\left(3;-4\right);\overrightarrow{DC}=\left(x_1-x_2;x_1^2-4x_1-5-x_2^2+4x_2+5\right)\)

=>\(\left\{{}\begin{matrix}x_1-x_2=3\\x_1^2-x_2^2-4x_1+4x_2=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1+x_2-4\right)=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2-4=-\dfrac{4}{x_1-x_2}=-\dfrac{4}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2=-\dfrac{4}{3}+4=\dfrac{12}{3}-\dfrac{4}{3}=\dfrac{8}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x_1=3+\dfrac{8}{3}=\dfrac{17}{3}\\x_1+x_2=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{17}{6}\\x_2=\dfrac{8}{3}-\dfrac{17}{6}=-\dfrac{1}{6}\end{matrix}\right.\)

Khi x=17/6 thì \(y=x^2-4x-5=\left(\dfrac{17}{6}\right)^2-4\cdot\dfrac{17}{6}-5=-\dfrac{299}{36}\)

Khi x=-1/6 thì \(y=\left(-\dfrac{1}{6}\right)^2-4\cdot\dfrac{-1}{6}-5=\dfrac{1}{36}+\dfrac{2}{3}-5=-\dfrac{155}{36}\)

Vậy: \(C\left(\dfrac{17}{6};-\dfrac{299}{36}\right);D\left(-\dfrac{1}{6};-\dfrac{155}{36}\right)\)

NV
2 tháng 11 2021

Chắc là A,B,M thẳng hàng chứ?

Do M thuộc Oy nên tọa độ có dạng: \(M\left(0;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}=\left(2;5\right)\\\overrightarrow{BM}=\left(1;m+2\right)\end{matrix}\right.\)

A, B, M thẳng hàng \(\Rightarrow\overrightarrow{BA}\) cùng phương \(\overrightarrow{BM}\)

\(\Rightarrow\dfrac{1}{2}=\dfrac{m+2}{5}\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow M\left(0;\dfrac{1}{2}\right)\)

NV
2 tháng 12 2021

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-1\right)\\\overrightarrow{DC}=\left(5-x;1-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}5-x=-3\\1-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=2\end{matrix}\right.\)

\(\Rightarrow D\left(8;2\right)\)

2 tháng 12 2021

Em cảm ơn ạ

I là trọng tâm của ΔABC

=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_I\\y_A+y_B+y_C=3\cdot y_I\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3+\left(-1\right)+x_C=3\cdot1=3\\-1+2+y_C=3\cdot1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3-2=1\\y_C=3-1=2\end{matrix}\right.\)

Vậy: C(1;2)

Ta có: A(3;-1); B(-1;2); C(1;2); D(x;y)

=>\(\overrightarrow{AB}=\left(-4;3\right);\overrightarrow{DC}=\left(1-x;2-y\right)\)

ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

=>\(\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: D(5;-1)

Tâm O của hình bình hành ABCD sẽ là trung điểm của AC

A(3;-1); C(1;2); O(x;y)

=>\(\left\{{}\begin{matrix}x=\dfrac{3+1}{2}=\dfrac{4}{2}=2\\y=\dfrac{-1+2}{2}=\dfrac{1}{2}\end{matrix}\right.\)

NV
4 tháng 1 2024

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_I\\y_A+y_B+y_C=3y_I\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=3x_I-\left(x_A+x_B\right)=1\\y_C=3y_I-\left(y_A+y_B\right)=2\end{matrix}\right.\)

\(\Rightarrow C\left(1;2\right)\)

Đặt tọa độ D là \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;3\right)\\\overrightarrow{DC}=\left(1-x;2-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\) \(\Rightarrow D\left(5;-1\right)\)

Tâm O hình bình hành là trung điểm đường chéo AC nên áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=2\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(2;\dfrac{1}{2}\right)\)

NV
27 tháng 10 2020

Do (P) và (d) đều đi qua điểm (1;3) nên:

\(\left\{{}\begin{matrix}a+b+c=3\\a+b=3\end{matrix}\right.\) \(\Rightarrow c=0\)

Từ \(a+b=3\Rightarrow b=3-a\)

Vậy pt (d) và (P) lần lượt có dạng: \(\left\{{}\begin{matrix}y=ax^2+\left(3-a\right)x\\y=ax+3-a\end{matrix}\right.\)

Pt hoành độ giao điểm (P) và (d):

\(ax^2+\left(3-a\right)x=ax+3-a\)

\(\Leftrightarrow ax^2+\left(3-2a\right)x+a-3=0\) (1)

(P) tiếp xúc (d) khi và chỉ khi (1) có nghiệm kép

\(\Leftrightarrow\Delta=\left(3-2a\right)^2-4a\left(a-3\right)=0\)

\(\Leftrightarrow9=0\) (vô lý)

Vậy ko tồn tại a;b;c thỏa mãn yêu cầu đề bài

28 tháng 3 2019

Ai giải giúp em các bài trên với em xin cam ơn ạ

2 tháng 5 2023

Phương trình đường thẳng AB: \(4x+3y+12=0\)

Diện tích tam giác ABC nhỏ nhất khi khoảng cách từ điểm C đến AB nhỏ nhất.

\(d\left(C;AB\right)=\dfrac{\left|4.\dfrac{c^2}{4}+3c+12\right|}{5}=\dfrac{1}{5}.\left|\left(c+\dfrac{3}{2}\right)^2+\dfrac{39}{4}\right|\ge\dfrac{39}{20}\)

Dấu "=" xảy ra khi và chỉ khi \(c=-\dfrac{3}{2}\) => \(C\left(\dfrac{9}{16};-\dfrac{3}{2}\right)\)

❤Hana

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn