K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2024

Phương trình hoành độ giao điểm là:

\(x^2=-2x+m-1\)

=>\(x^2+2x-m+1=0\)

\(\Delta=2^2-4\cdot1\cdot\left(-m+1\right)=4+4m-4=4m\)

Để (P) cắt (d) tại hai điểm phân biệt thì 4m>0

=>m>0

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1x_2=\dfrac{c}{a}=-m+1\end{matrix}\right.\)

\(\left(y_1+y_2\right)^2=110-x_1^2-x_2^2\)

\(\Leftrightarrow\left(x_1^2+x_2^2\right)^2=110-\left(x_1^2+x_2^2\right)\)

=>\(\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2=110-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\)

=>\(\left[\left(-2\right)^2-2\left(-m+1\right)\right]^2=110-\left[\left(-2\right)^2-2\left(-m+1\right)\right]\)

=>\(\left(4+2m-2\right)^2=110-\left(4+2m-2\right)\)

=>\(\left(2m+2\right)^2=110-\left(2m+2\right)\)

=>\(\left(2m+2\right)^2+\left(2m+2\right)-110=0\)

=>(2m+2+11)(2m+2-10)=0

=>(2m+13)(2m-8)=0

=>\(\left[{}\begin{matrix}2m+13=0\\2m-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{13}{2}\left(loại\right)\\m=4\left(nhận\right)\end{matrix}\right.\)

1 tháng 7 2021

m = 1

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=2x-m+1\)

=>\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)

\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-2m+6>0

=>-2m>-6

=>m<3

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)

\(x_1x_2\left(y_1+y_2\right)+48=0\)

=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)

=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)

=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)

=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)

=>\(\left(m-1\right)\left(-m+5\right)+12=0\)

=>\(-m^2+5m+m-5+12=0\)

=>\(-m^2+6m+7=0\)

=>\(m^2-6m-7=0\)

=>(m-7)(m+1)=0

=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

22 tháng 5 2017
  1. a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6   <=>-m-2-m+6=3  <=>-2m=-1  <=>m=1/2.
9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

10 tháng 4 2021

Bài 1 : 

Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương 

\(t+t^2-6=0\)

Ta có : \(\Delta=1+24=25\)

\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)

TH1 : \(x^2=-3\)( vô lí ) 

TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)

5 tháng 5 2021

a) \(x^2+x^4-6=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

⇒ t + \(t^2\) - 6 = 0 

⇒ \(t^2+t-6=0\)

⇒ Δ = \(1^2-4.\left(-6\right)\)

        = 25

x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)

x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)

Thay  \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)

Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)

b)   (d) : y = 4x +1 - m

      (p) : y = \(x^2\)

Xét phương trình hoành độ giao điểm

\(x^2=4x+1-m\)

⇒ \(x^2-4x+m-1=0\)

Δ' = 4 - m + 1

    = 5 - m

Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0

5 - m > 0 

⇒ m < 5

Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt

Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)

Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)

và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)

Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)

⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)

⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)   

Vậy m = - 4 thì TMĐKBT

 

27 tháng 6 2019

Gọi ptđt (d) có dạng: y= kx+b

Vì M(1;12)\(\in\) (d)

Thay xM= 1; yM= 12 vào (d)

\(k+b=12\Rightarrow b=12-k\)

Xét PTHĐGĐ của (d) và (P)

\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)

\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)

\(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)

Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK

Phương trình hoành độ giao điểm là:

\(x^2=mx-m+2\)

=>\(x^2-mx+m-2=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-2\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4>0\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-m\right)}{1}=m\\x_1\cdot x_2=\dfrac{c}{a}=m-2\end{matrix}\right.\)

\(x_1y_2+x_2y_1-15=0\)

=>\(x_1\cdot x_2^2+x_2\cdot x_1^2-15=0\)

=>\(x_1x_2\left(x_1+x_2\right)-15=0\)

=>\(m\left(m-2\right)-15=0\)

=>\(m^2-2m-15=0\)

=>(m-5)(m+3)=0

=>\(\left[{}\begin{matrix}m=5\left(nhận\right)\\m=-3\left(nhận\right)\end{matrix}\right.\)

NV
7 tháng 7 2020

Phương trình hoành độ giao điểm: \(x^2-\left(2m-1\right)x+m-2=0\)

\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=\left(2m-2\right)^2+5>0;\forall m\)

\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt

\(x_1y_1+x_2y_2=0\)

\(\Leftrightarrow x_1.x_1^2+x_2.x_2^2=0\) (do \(y_1=x_1^2;y_2=x_2^2\))

\(\Leftrightarrow x_1^3+x_2^3=0\)

\(\Leftrightarrow x_1^3=-x_2^3\Leftrightarrow x_1=-x_2\)

\(\Leftrightarrow x_1+x_2=0\)

\(x_1+x_2=2m-1\Rightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)

7 tháng 7 2020

ra là thế, aa mơn chú Hàm số y = ax^2 (a khác 0)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10