K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)

b) Phương trình hoành độ giao điểm giữa (P) và (d) là:

 \(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)

c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)

Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
 

23 tháng 5 2018

CẢM ƠN BAN HẢI NHIỀU NHA !

17 tháng 5 2016

1. ko bao h

2. pt hoành độ x^2-2x-m^2-1=0

đẻnta=1+m^2+1>0

=>.............................

3.Xét viet pt hoành độ đi

25 tháng 3 2022

a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m^2+2m=0\)

\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm pb khi m khác 1 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)

Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)

Thay vào ta được \(2x_1+m^2+2x_2=5m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)

31 tháng 3 2022

b) x2-2x-m2+2m=0

Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1

KL:....

c) với m≠1 thì PT có 2 nghiệm PB

C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)

tt. tính x2

C2. 

Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)

Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)

Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:

 \(P=x_1\left(2-x_1\right)=-m^2+2m\)

⇔2x1-x12=-m2+2m

⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)

⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)

Vậy với m=4 thì .....

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)