K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)

NV
9 tháng 3 2019

Pt hoành độ giao điểm:

\(\frac{1}{2}x^2=mx-\frac{1}{2}m^2+\frac{1}{2}\Leftrightarrow x^2-2mx+m^2-1=0\)

\(\Delta'=m^2-\left(m^2-1\right)=1>0\) \(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt có hoành độ:

\(x_{1;2}=m\pm1\)

- TH1: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=m+1\end{matrix}\right.\)

\(x_1-2x_2=0\Leftrightarrow m-1-2\left(m+1\right)=0\Rightarrow-m-3=0\Rightarrow m=-3\)

- TH2: \(\left\{{}\begin{matrix}x_1=m+1\\x_2=m-1\end{matrix}\right.\)

\(x_1-2x_2=0\Rightarrow m+1-2\left(m-1\right)=0\Rightarrow-m+3=0\Rightarrow m=3\)