Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm: x^2 = mx + 1 <=> x^2 - mx -1 = 0
\(\Delta\)= m^2 - 4 (-1) = m^2 + 4 > 0 \(\forall\)m
=> (d) luôn cắt (P) tại hai điểm phân biệt (đpcm)
Do đó: x1 = \(\frac{1}{2}\left(m+\sqrt{m^2+4}\right)\)
=> y1 = \(\frac{1}{4}\left(m^2+m^2+4+2m\sqrt{m^2+4}\right)=\frac{1}{2}\left(m^2+2+m\sqrt{m^2+4}\right)\)
Tương tự x2 = \(\frac{1}{2}\left(m-\sqrt{m^2+4}\right)\)=> y2 = \(\frac{1}{2}\left(m^2+2-m\sqrt{m^2+4}\right)\)
Thay y1, y2 vừa tìm đc vào biểu thức y1 + y2 + y1*y2 = 7 ta đc: \(m^2+4=7\)=> m = \(\pm\sqrt{3}\)
Tính lại hộ mình xem tìm m đã đúng chưa nhé :)) sợ lẫn lộn r tính sai :))
Xét phương trình : \(x^2 = mx + 1\) <=> \(x^2 - mx - 1 = 0\)
\(\Delta=\left(-m\right)^2-4\left(-1\right)=m^2+4>0\)\(\forall\)m
\(m^2\ge0\forall m\)=> (d) luôn cắt (P) tại hai điểm phân biệt
Theo Viet:\(\hept{\begin{cases}x_1+x_2=m\\x_1\times x_2=-1\end{cases}}\)
Giả sử 2 điểm phân biệt lần lượt là A(x1;y1) ; B(x2;y2)
Ta có: y1=x12 ; y2=x22
Theo bài : y1 + y2 + y1y2 = 7
<=> x12 + x22 + (x1x2)2 = 7
<=> (x1 +x2 )2 - 2x1x2 + (x1x2)2 = 7
<=> m2 + 2 + 1 = 7
<=> m2 = 7 - 3
<=> m2 = 4
=> m = \(\pm2\)
aPt hoành độ giao điểm là x2=mx+1
<=>x2-mx-1=0
\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)
=>đpcm
b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau
tính (d) giao trục OY tại K
=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra
a: Phương trình hoành độ giao điểm là:
\(x^2-mx+1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)
Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0
=>(m-2)(m+2)>0
hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
Theo đề, ta có:
\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)
\(\Leftrightarrow m-1=3\)
hay m=4
Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)
Tổng và tích hai nghiệm xa, xb là:
xa + xb = -m
xa . xb = -1
Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2