K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$

Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:

$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất

Điều này xảy ra khi:

$\Delta=m^2+n=0(2)$

Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$

Nếu $m=1$ thì $n=-1$

Nếu $m=-2$ thì $n=-4$

Vậy............

Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{4}x^2-mx-n=0\)

THeo đề, ta có:

\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)

NV
13 tháng 5 2020

Để d đi qua A

\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)

Phương trình hoành độ giao điểm (P) và d:

\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)

Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép

\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)

- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)

Tọa độ tiếp điểm là \(\left(0;0\right)\)

- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)

Tọa độ tiếp điểm là \(\left(2;2\right)\)

a: Thay x=0 và y=9 vào (d), ta được:

\(b+6\cdot0=9\)

hay b=9

Vậy: (d): y=6x+9

b: Phương trình hoành độ giao điểm là:

\(ax^2-6x-9=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot a\cdot\left(-9\right)=36a+36\)

Để (d) tiếp xúc với (P) thì 36a+36=0

hay a=-1

28 tháng 5 2022

`a)` Vì `(d)` đi qua `M(0;9)` nên thay `x=0` và `y=9` vào `(d)` có: `b=9`

`b)` Với `b=9=>(d):y=6x+9`

Xét ptr hoành độ của `(d)` và `(P)` có:

         `ax^2=6x+9`

`<=>ax^2-6x-9=0`       `(1)`

Để `(d)` tiếp xúc với `(P)` thì ptr `(1)` có nghiệm kép

    `<=>\Delta' =0`

    `<=>(-3)^2-a.(-9)=0`

    `<=>a=-1` (t/m)

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)

b: 

1: Thay x=-1 và y=3 vào (d), ta được:

\(2\cdot\left(-1\right)-a+1=3\)

=>-a-1=3

=>-a=4

hay a=-4

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

12 tháng 6 2017

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

12 tháng 6 2017

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>

7 tháng 3 2017

Để (P) và (d) tiếp xúc với nhau thì phương trình \(\frac{-3x^2}{4}=\left(m-2\right)x+3\) có 1 nghiệm

\(\Leftrightarrow3x^2+\left(4m-8\right)x+12=0\)

Phương trình này có nghiệm kép khi:

\(\Delta'=\left(2m-4\right)^2-3.12=0\)

\(\Leftrightarrow m^2-4m-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=5\\m=-1\end{cases}}\)

Với m = 5 thì tọa độ giao điểm là: \(\left(-2;-3\right)\)

Với m = -1 thì tọa độ giao điểm là: \(\left(2;-3\right)\)

7 tháng 3 2017

Nghiệm kép  \(\Delta=0\Rightarrow\left(m-2\right)^2-4\frac{3.}{4}.3=0\Rightarrow\)\(\hept{\begin{cases}m-2=3\\m-2=-3\end{cases}}\)

\(\hept{\begin{cases}n=5\\m=-1\end{cases}}\)