Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét phương trình hoành độ giao điểm chung của (d) và (P) :
\(x^2=\left(2m-1\right)x-m^2+2\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+m^2-2=0\left(1\right)\)
Thay m=2 vào pt (1) ta được:
\(x^2-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=2\Rightarrow y=4\end{cases}}\)
Tọa độ giao điểm của (d) và (P) khi m=2 là \(A\left(1;1\right);B\left(2;4\right)\)
b) \(\Delta_{\left(1\right)}=\left(2m-1\right)^2-4m^2+8\)
\(=4m^2-4m+1-4m^2+8\)
\(=9-4m\)
Để pt (1) có 2 n ghiệm pb \(\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2m-1\\x_1.x_2=m^2-2\left(1\right)\end{cases}}\)
Ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1-3x_2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x_1+3x_2=6m-3\\x_1-3x_2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{3m+2}{2}\\x_2=\frac{m-4}{2}\end{cases}\left(3\right)}\)
Thay (3) vào (2) ta được:
\(\frac{3m+2}{2}.\frac{m-4}{2}=m^2-2\)
\(\Leftrightarrow\frac{3m^2-10m-8}{4}=m^2-2\)
\(\Rightarrow3m^2-10m-8=4m^2-8\)
\(\Leftrightarrow m^2+10m=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=-10\end{cases}\left(tm\right)}\)
Vậy ...
a: Phương trình hoành độ giao điểm là:
\(x^2=2mx-m^2+4\)
=>\(x^2-2mx+m^2-4=0\)
\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)
Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)
=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)
=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)
=>\(4m^2-2m^2+8-6m-4=0\)
=>\(2m^2-6m+4=0\)
=>\(m^2-3m+2=0\)
=>(m-1)(m-2)=0
=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
a, Hoành độ giao điểm của d và P là:
x2 = 2mx -m +1 <=> x2 -2mx +m-1
đenta = 4m2-4.(m-1) = 4m2-4m+4 = (2m)2-2.2m +1 +3=(2m-1)2+3
=> đenta >= 3
Vậy không có giá trị m để P tiếp xúc với d
b,Áp dụng định lí Vi-ét:
\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m-1\end{matrix}\right.\)
Ta có: x12.x2 + mx2=x2
<=> x12.x2+mx2-x2=0 <=> x12.x2 + x2(m-1)=0
<=> x12.x2+x2(x1.x2)=0 <=>x12.x2+x22.x1=0
<=>x1.x2.(x1+x2)=0 <=> (m-1).2m=0
<=> \(\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)
Vậy m \(\in\) \(\left\{1;0\right\}\)
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10
1.
Đặt \(\left(x+1\right)^2=t\ge0\) ta được:
\(t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
2.
Phương trình hoành độ giao điểm:
\(-\dfrac{2}{3}x^2=mx-1\Leftrightarrow2x^2+3mx-3=0\) (1)
Do \(ac=-6< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{3m}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)
\(x_1+x_2=-5\Leftrightarrow-\dfrac{3m}{2}=-5\)
\(\Leftrightarrow m=\dfrac{10}{3}\)