K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Tham khảo thôi nha . 

a) \(P=\left(x+5\right)\left(ax^2+bx+25\right)\)

\(=ax^3+bx^2+25x+5ax^2+5bx+125\)

\(=ax^3+\left(5a+b\right)x^2+\left(5b+25\right)x+125\)

b)  Nếu theo đề bài \(\forall x\)thì \(P=Q\)

\(\Leftrightarrow ax^3+\left(5ab\right)x^2+\left(5b+25\right)x+125\)( P)

\(=x^3+125\forall x\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\5a+b=0\\5b+25=0\end{cases}}\)'

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}\)

Vậy ..........

28 tháng 9 2016

Ta có : x3+125

=(x+5)(x2+5x+25)

Mà : 

(x+5)(ax2+bx+25)=x3+125

=> a=1 và b=5

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)