K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.

7 tháng 5 2020

\(x^3+y^3-3xy=p-1\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xy+1=p\)

\(\Leftrightarrow\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1-3xy\right]=p\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=p\\\left(x+y\right)^2-\left(x+y\right)+1-3xy=1\end{cases}}\)( để ý rằng x+y+1 > 1 và p  là số nguyên tố )

\(\Leftrightarrow\hept{\begin{cases}x+y+1=p\\\left(x+y\right)^2-\left(x+y\right)=3xy\end{cases}}\)

Mà ta có đánh giá quen thuộc sau:

\(4xy\le\left(x+y\right)^2\Rightarrow3xy=\left(x+y\right)^2-\left(x+y\right)\le\frac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)\le0\Rightarrow0\le x+y\le4\)

Mặt khác \(x+y=p-1\Rightarrow p-1\le4\Leftrightarrow p\le5\)

Vậy pmax=5 tại x=y=2

F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy

=(x+y)3-xy(3x+3y-2)

=20073-xy[3.2007-2]

làm tiếp đi 

chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)

21 tháng 10 2019

Đầu tiên tìm GTLN, GTNN của xy.

Không mất tính tổng quát giả sử:

\(x\ge y+1\)

\(\Leftrightarrow x-y-1\ge0\)

\(\Leftrightarrow x-y-1+xy\ge xy\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)

Từ đây ta suy được:

\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)

Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)

Ta lại có:

\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)

Thế vô là xong

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1