Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) sao lai hinh nhu sai?
p nguyen to chia het cho 3 => p chi co the =3
3 nho hon 9=> 3 chia 9 =0 du 3
dpcm
Câu hỏi này câu a như bị sai đề,
Câu b
p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra \(p^2\) chia 3 dư 1.
Suy ra \(p^2+2003\) chia hết cho 3 ( do 2003 chia 3 dư 2)
Vậy \(p^2+2003\) là hợp số.
a) Nếu n = 3k+1 thì n2n2 = (3k+1)(3k+1) hay n2n2 = 3k(3k+1)+3k+1
Rõ ràng n2n2 chia cho 3 dư 1
Nếu n = 3k+2 thì n2n2 = (3k+2)(3k+2) hay n2n2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n2n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p2p2 chia cho 3 dư 1 tức là p2=3k+1p2=3k+1 do đó p2+2003=3k+1+2003p2+2003=3k+1+2003 = 3k+2004⋮⋮3
Vậy p2+2003p2+2003 là hợp số
a) n là số ko chia hết cho 3 => có dạng 3k +1. Ta có : (3k+1) 2 = 3k2 + 12 . Ta có 3k ^2 chia hết cho 3 ; 1^2 chia 3 dư 1 => n ^2 chia ba dư 1
b) vì p là SNT lớn hơn 3 => p^2 chia cho 3 có dạng 3k +1 . Ta có 3k+1 + 2003 = 3k + 2004 chia hết cho 3 => là hợp số
a) Vì n là số không chia hết cho 3 nên n có dạng 3k+1 hoặc 3k+2
+) n = 3k+1 => n2 = (3k+1)2
= 9k2 + 6k +1
Có 9k2 \(⋮\)3 ; 6k \(⋮\)3 ; 1 \(⋮\) 3 dư 1 => 9k2 +6k +1 chia 3 dư 1
hay n2 chia 3 dư 1 (1)
+) n= 3k+2 => n2 = (3k+2)2 = 9k2 +12k + 4
Có 9k2 \(⋮\)3 ; 12k\(⋮\)3 ; 4 chia 3 dư 1 => 9k2 +12k +4 chia 3 dư 1
hay n2 chia 3 dư 1 (2)
Từ (1),(2) => đpcm
Vì p là số nguyên tố lớn hơn 3
=>p có dạng 3k+1(k thuộc N*)
Với p=3k+1 thì p2+98=(3k+1)(3k+1)+98
=9.k2+1+98
=9.k2+99
=9(k2+11)
Vì 9(k2+11) chia hết cho 9 =>p2+98 chia hết cho 9
Mà p2+98>3
=>p2+98 là hợp số(chọn)
Vậy p2+98 là hợp số
Nhớ tick
Vì p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
=>p2 chia 3 dư 1
=>p2+98 chia hết cho 3
=>p2+98 là hợp số.