3)   "...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )

Để A > 0 thì có 2 trường hợp :

+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)

Để A < 0 thì có 2 trường hợp :

+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)

2 tháng 1 2019

b) Để A thuộc Z thì x -7 ⋮ x + 4

<=> x + 4 - 11 ⋮ x + 4 

Vì x + 4 ⋮ x + 4

=> 11 ⋮ x + 4

=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }

=> x thuộc { -3; 7; -5; -15 }

Vậy...........

5 tháng 7 2017

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)

\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)

\(\frac{2}{3}-x=-\frac{7}{6}\)

\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)

\(x=\frac{2}{3}+\frac{7}{6}\)

\(x=\frac{11}{6}\)

21 tháng 6 2016

2.x + y = xy

\(\Rightarrow\)x=y (x-1)

\(\Rightarrow\)x : y = x -1

\(\Rightarrow\)x - 1 = x + y

\(\Rightarrow\)y = - 1

- Nếu y = 1 có:

x + 1 = x

\(\Leftrightarrow\)1 = 0 (loại)

- Nếu y =-1 có

x - 1 = x

\(\Leftrightarrow\)x = \(\frac{1}{2}\)

thay vào thấy tỏa mãn

Vậy x = 1 \(\frac{1}{2}\); y = \(-\)1

ủng hộ nha!

27 tháng 10 2015

A= \(\frac{x+6}{x-4}=\frac{x-4+10}{x-4}=1+\frac{10}{x-4}\)

Để A \(\in\)Z

=> 1+\(\frac{10}{x-4}\)\(\in\)Z

=> \(\frac{10}{x-4}\in\)Z

=> x-4 \(\ne\)0

=> x\(\ne\)4

Vậy x\(\ne\)4 thì A\(\in\)​Z 

b) Để A>0 

=> 1+\(\frac{10}{x-4}\)>0

=> \(\frac{10}{x-4}>-1\)

=> x-4 >-10

=> x> -6

Vậy x> -6 thì A>0

c) 

Để A\(\le\)0

=> 1+\(\frac{10}{x-4}\le0\)

=> \(\frac{10}{x-4}\le-1\)

=> x-4\(\le\)-10

=> x\(\le\)-6

Vậy .....