K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

a) P = \(\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

= \(\left(\dfrac{-\sqrt{x}+\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-\left(x-4\right)+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

= \(\left(\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)

= \(\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\) = \(\dfrac{1}{\sqrt{x}+1}.\dfrac{\sqrt{x}-2}{1}\) = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

11 tháng 2 2019

1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)

\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))

\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)

\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)

20 tháng 10 2018

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

6 tháng 11 2018

Xem lại đề bạn ơi

6 tháng 11 2018

kia đáng phải + chứ

Bài 2: 

a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-\left(5\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b: Thay \(x=5-2\sqrt{6}\) vào A, ta được:

\(A=\dfrac{-5\left(\sqrt{3}-\sqrt{2}\right)+2}{\sqrt{3}-\sqrt{2}+3}=\dfrac{-5\sqrt{3}+5\sqrt{2}+2}{\sqrt{3}-\sqrt{2}+3}\simeq0,124\)

d: Để A=1/2 thì \(\sqrt{x}+3=-10\sqrt{x}+4\)

\(\Leftrightarrow11\sqrt{x}=1\)

hay x=1/121

23 tháng 9 2017

a) \(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)ư

=\(\dfrac{x+2\sqrt{x}-7-\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{x +2\sqrt{x}-7-x+\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{-4}\)

=\(\dfrac{-4\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{-4\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)

b)ta có : \(\dfrac{\sqrt{x}-1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\dfrac{2}{\sqrt{x}-3}\)

để P nguyên thì \(\sqrt{x}-3\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-3\inƯ\left(\pm1,\pm2\right)\)

\(\Rightarrow\sqrt{x}-3=1\Leftrightarrow x=16\left(TM\right)\)

\(\sqrt{x}-3=-1\Leftrightarrow x=4\left(KTM\right)\)

\(\sqrt{x}-3=2\Leftrightarrow x=25\left(TM\right)\)

\(\sqrt{x}-3=-2\Leftrightarrow x=1\left(KTM\right)\)

vậy x\(\in\left\{16,25\right\}\)

23 tháng 9 2017

ĐKXĐ : \(x\ge9\)

30 tháng 9 2018

a, Mk làm hơi tắt chút bạn thông cảm nha . mk vội ý mà ok

\(A=\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right).\left(x-3\sqrt{x}+2\right)\)

\(A=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

30 tháng 9 2018

Câu c : \(A\in Z\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{1}{\sqrt{x}}\in Z\)

Để : \(1-\dfrac{1}{\sqrt{x}}\in Z\) thì \(\sqrt{x}\inƯ\left(1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=1\)

25 tháng 11 2022

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)}\)

b: Để A là số nguyên thì \(\left(\sqrt{x}-1\right)^2⋮\left(\sqrt{x}+1\right)\left(-x+\sqrt{x}+1\right)\)

=>x=0

24 tháng 11 2022

a: 

Sửa đề: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{x}{x-1}\right)\)

\(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-x}{x-1}\)

\(=\dfrac{x-1-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{-x+\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{-x+\sqrt{x}+1}=\dfrac{-\sqrt{x}+3}{x-\sqrt{x}-1}\)

b: Để A là số nguyên thì \(\sqrt{x}\left(-\sqrt{x}+3\right)⋮x-\sqrt{x}-1\)

=>\(-x+3\sqrt{x}⋮x-\sqrt{x}-1\)

=>\(-x+\sqrt{x}+1+2\sqrt{x}-1⋮x-\sqrt{x}-1\)

=>\(x=0\)

 

3 tháng 8 2018

\(a.P=\dfrac{2\sqrt{x}-5}{x-5\sqrt{x}+4}+\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-4}=\dfrac{2\sqrt{x}-5+2\sqrt{x}-8-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)}=\dfrac{3}{\sqrt{x}-1}\) ( x ≥ 0 ; x # 1 ; x # 16 )

\(b.\) \(P\text{∈}Z\)\(\dfrac{3}{\sqrt{x}-1}\text{∈}Z\)\(\sqrt{x}-1\text{∈}\left\{1;-1;3;-3\right\}\)

+) \(\sqrt{x}-1=1\text{⇔}x=4\left(TM\right)\)

+) \(\sqrt{x}-1=-1\text{⇔}x=0\left(TM\right)\)

+) \(\sqrt{x}-1=3\text{⇔}x=16\left(KTM\right)\)

+) \(\sqrt{x}-1=-3\text{⇔}vo-nghiem\)

KL............

3 tháng 8 2018

Bạn có thể rút gọn chi tiết giùm mình không