Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMO=góc AFO=góc ANO=90 độ
=>A,M,F,O,N cùng thuộc 1 đường tròn
b: Gọi I là giao của MN với AO
=>I là trung điểm của MN
AI*AO=AM^2
Xét ΔAMH và ΔAFM có
góc AMH=góc AFM
góc MAH chung
=>ΔAMH đồng dạng với ΔAFM
=>AH*AF=AI*AO
=>góc AHI=góc AOF
=>OFHI nội tiếp
=>M,N,H thẳng hàng
a) F,M,N cùng nhìn AO dưới 1 góc vuông
nên 5 điểm thuộc 1 đường tròn
b) Gọi I là trung điểm MN.G là chân đường cao kẻ từ C xuống AB.
Ta có: AI.AO=AM2=AG.AB=AH.AF.
Suy ra OIHF nội tiếp. NÊn HI vuông góc AO
mà MN vuông góc AO do MN là trung trực nên M,N,H thẳng hàng
c) Do tứ giác AMFN nội tiếp nên
HF . HA = HM . HN = (IM - IH) . (IN + IH) = IM2 - IH2= R2- (OI2+IH2)=R2 - OH\(^2\)
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .