Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N K H E F I J T P
a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.
Nên tứ giác ACBD là hình vuông.
Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900
=> Tứ giác ACMH nội tiếp đường tròn
Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450
=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.
b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.
Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900
=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE
Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900
Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF
Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)
=> J là trung điểm của HM => Đpcm.
c) Trên tia đối của tia DB lấy T sao cho DT=CM.
Gọi P là hình chiếu của A xuống đoạn MN.
Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT
mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900
=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)
=> ^AMN=^ATN (2 góc tương ứng) hay ^AMP=^ATD
=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).
Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.
Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi
=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.
Vậy...
ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!
- Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
- Đang học tại: Trường THCS Lập Thạch
- Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
- Điểm hỏi đáp: 16SP, 0GP
- Điểm hỏi đáp tuần này: 1SP, 0GP
- Thống kê hỏi đáp
A B C D E M J O I
a) Ta có :
\(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)
\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)
Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\) hay \(CD\perp DE\)
\(\Rightarrow DE//AB\)nên tứ giác ABED là hình thang cân
\(\Rightarrow AD=BE\)
Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)không đổi
b ) \(IB=IC=IM\)nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)
Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\)
Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\)( không đổi vì O,M cố định )
Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi.
Chúc bạn học tốt !!!
A B D C P S H O Q R
a ) Theo định lí Py - ta - go
\(HA^2+HB^2=AB^2;HC^2+HB^2=BC^2;HC^2+HD^2=CD^2;HA^2+HD^2=AD^2\)
\(\Rightarrowđpcm\)
b ) Tứ giác \(HPBS\)nội tiếp \(\Rightarrow\widehat{HPS}=\widehat{HBS}=\widehat{DBC}\)
Tứ giác HPAQ là hình chữ nhật \(\Rightarrow\widehat{HPQ}=\widehat{HAQ}=\widehat{CAD}=\widehat{CBD}\)
Do đó : \(\widehat{SPQ}=\widehat{HPS}+\widehat{HPQ}=2\widehat{CBC}\)
Tương tư : \(\widehat{SQR}=2\widehat{BDC}\)
Do đó : \(\widehat{DBC}+\widehat{BDC}=180^0\)
\(\Leftrightarrow\widehat{SPQ}+\widehat{SRQ}=180^0\) nên tứ giác PQRS nội tiếp ( đ/lí
đảo)
Chúc bạn học tốt !!!
O A C B D I M N E F P H
a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC
=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)
Tương tự: AD2 + BC2 = 4R2 => ĐPCM.
b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2
Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF
= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2
c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.
C/m tương tự, ta có: IM vuông góc CD => ĐPCM.
d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN
Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).
e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.
Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(