K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Cho tam giác ABC có S = 36cm2. Lấy H thuộc cạnh AB sao cho AH = 1/3x AB. Lấy I thuộc cạnh AC sao cho AI = 1/3x AC. Tính S IHC

Làm ơn giải theo cách lớp 6 giùm. Ví dụ:

Xét tam giác............

Có chiều cao hạ từ đỉnh..........

=>.............

O A B C D I E K

Ta có :

\(\frac{KC}{sin\widehat{CAK}}=\frac{R\sqrt{2}}{sin\widehat{AKC}}=\frac{R\sqrt{2}}{sin\widehat{AED}}=\frac{AE}{sin\widehat{ADE}}=\frac{AE}{sin\widehat{BIE}}=\frac{AE}{sin\widehat{AIE}}=\frac{3R}{\sqrt{2}}\)

\(\Rightarrow sin\widehat{AKC}=\frac{2}{3}\)

\(\Rightarrow AK=\frac{2}{3R}\)

áp dụng định lý Py ta go vào \(\Delta AOK\) ta được

\(AK^2=AO^2+OK^2\)

\(\Rightarrow OK=\sqrt{R^2-\frac{4}{9R^2}}=\sqrt{9R^4-4}\)

\(\Rightarrow DK=OD-OK=R-\sqrt{9R^4-4}\)

23 tháng 1 2021

\(AK=\frac{2}{\sqrt{3}}R\) chứ bạn?

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DFBÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DFBài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ...
Đọc tiếp

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF

BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF

Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD

Bài 4 cho tam giác ABC cân nội tiếp đường tròn O

A chừng minh AO là đường trung trực của BC

B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm

Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA

gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F

A Cm tam giác ICD cân

gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK

giúp mình với mình cảm ơn nhiều 

0
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

6 tháng 1 2021

a) AC \(\perp\) DE tại M

=> MD = ME

Tứ giác ADBE có:

MD =ME, MA = MB (gt) 

AB \(\perp\) DE

=> Tứ giác DAEB là hình thoi

b) Ta có: góc BIC = 90o (góc nội tiếp chắn nửa đường tròn (O'))

góc ADC = 90(góc nội tiếp chắn nửa đường tròn (O))

=> BI \(\perp\) CD , AD \(\perp\) DC, nên AI // BI

mà BE //AD => E,B,I thẳng hàng

Tam giác DIE có MI là đường trung tuyến với cạnh huyền => MI = MD

Do MI =MD(cmt)

=> tam giác MDI cân tại M

=> góc MID = góc MDI

O'I = O'C=R'

=> tam giác O'IC cân tại O'

=> Góc O'IC = góc O'CI

Suy ra: \(\widehat{MID}+\widehat{O'IC}=\widehat{MDI}+\widehat{O'CI}=90^o\) (tam giác MCD vuông tại M)

Vậy MI vuông góc O'I tại , O'I =R' bán kính đường tròn(O')

=> MI là tiếp tuyến đường tròn (O')

c) \(\widehat{BIC}=\widehat{BIM}\) (góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BI)

\(\widehat{BCI}=\widehat{BIH}\) (cùng phụ góc HIC)

=> \(\widehat{BIM}=\widehat{BIH}\)

=> IB là phân giác \(\widehat{MIH}\) trong tam giác MIH

ta lại có BI vuông góc CI

=> IC là phân giác ngoài tại đỉnh I của tam giác MIH

Áp dụng tính chất phân giác đối với tam giác MIH

\(\dfrac{BH}{MB}=\dfrac{IH}{MI}=\dfrac{CH}{CM}\) => \(CH.BM=BH.MC\) (đpcm)