Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB trước nha
Phương trình đường thẳng cần tìm có dạng y =ax + b
Qua A (2;4) => (thế x và y vào hpt nha ) 4= 2a + b (1)
Qua B(3;6) => 6= 3a+ b (2)
Rút b ra <=> b = 6-3a
Thế b vào (1)
<=> 4= 2a + 6-3a
a =2 ( chắc đúng)
Thế vào (2)
<=> 6= 3×2 + b
b = 0
Vậy hàm số AB cần tìM y= ax + b
<=> Y= 2x + 0(2x thui CX đc)
Vẽ BC
Qua điểm C(7;2) <=>2= 7a+ b
Thế b tìm đc ở điểm B
<=> 2 = 7a + 0
a = 2/7
Vậy hàm số BC cần tìm y= 2/7x
Làm tương tự như (1) và (2)
Thế vào thì hàm số AC cần tìm là
Y= -2/5x
Chắc đúng
Giải :
Ta có hình vẽ :
A B C H D E
a ) Ta có :
+ ) \(AH^2=BH.CH=9.16=144cm^2\)
\(\Rightarrow AH=12cm\)
+ ) \(AB^2=BH.BC=9.25=225cm^2\)
\(\Rightarrow AB=15cm\)
+ ) \(AC^2=CH.BC=16.25=400cm^2\)
\(\Rightarrow AC=20cm\)
b ) Chứng minh được tứ giác ADHE là hình chữ nhật
c ) Ta có :
+ ) \(HD.AB=HA.HB\)
\(\Rightarrow HD=\frac{HA.HB}{AB}=\frac{12.9}{15}=7,2cm\)
+ ) \(HE.AC=HA.HC\)
\(\Rightarrow HE=\frac{HA.HC}{AC}=\frac{12.16}{20}=9,6cm\)
\(\Rightarrow P\left(ADHE\right)=\left(7,2+9,6\right).2=33,6\left(cm\right)\)
\(\Rightarrow S\left(ADHE\right)=7,2\times9,6=69,12\left(cm^2\right)\)