K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2021

a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)

Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)

Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)

2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)

15 tháng 5 2021

Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)

                  Góc CMD =90 độ(góc nt chắn nửa đt)

             Mà góc CHE và góc CMD ở vị trí đối nhau

 ⇒ Tứ giác CMEH nội tiếp

Câu b:

   Xét \(\Delta NACva\Delta NMB\) có :

     Góc N chung

     Góc NCA = góc NBM (cùng chắn cung MA)

⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)

  ⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB

Câu c:

Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK

                                                            Mà IK\(\perp\)AK

                                           ⇒IK song song với MP (từ vuông góc đến song song

 

28 tháng 4 2021

Lời giải chi tiết

Vẽ OM⊥CDOM⊥CD 

Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay MC=MDMC=MD   (1) (định lý)

Tứ giác AHKBAHKB có AH⊥HK; BK⊥HK⇒HA//BKAH⊥HK; BK⊥HK⇒HA//BK.

Suy ra tứ giác AHKBAHKB là hình thang.  

Xét hình thang AHKBAHKB, ta có:

OM//AH//BKOM//AH//BK (cùng vuông góc với CDCD)

mà AO=BO=AB2AO=BO=AB2

⇒MO⇒MO là đường trung bình của hình thang AHKBAHKB.

⇒MH=MK⇒MH=MK   (2)

Từ (1) và (2)  ⇒MH−MC=MK−MD⇔CH=DK⇒MH−MC=MK−MD⇔CH=DK (đpcm)

Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm CC và DD cho nhau.

16 tháng 8 2021

Kẻ OMOM vuông góc với dây CDCD.

Hình thang AHKBAHKB có

AO=OBAO=OB và OM / / AH / / BKOM//AH//BK

nên MH=MKMH=MK                                                    (1)

OMOM vuông góc với dây CDCD nên

MC=MDMC=MD                                                              (2)
Từ (1) và (2) suy ra CH=DKCH=DK.

28 tháng 4 2021

Lời giải chi tiết

a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2.   (1)

Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.

Theo tính chất trung tuyến ứng với cạnh huyền, ta có:  

             OD=12BCOD=12BC                                          (2)

Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC

Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC

Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC. 

b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.

Ta có DEDE là một dây cung không đi qua tâm nên  ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).

16 tháng 8 2021

a) Gọi \mathrm{M}M là trung điểm của \mathrm{BC}BC.

Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BCEM=21BC,DM=21BC.

Suy ra ME=MB=MC=MDME=MB=MC=MD

do đó B, E, D, CB,E,D,C cùng thuộc đường tròn đường kính BCBC.

b) Trong đường tròn nói trên, DEDE là dây, BCBC là đường kính nên DE<BCDE<BC

12 tháng 5 2021

a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)

Thay \(\sqrt{x}=9\)vào biểu thức A ta được : 

\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)

b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)

\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)

nên \(P>\frac{1}{2}\)

12 tháng 5 2021

a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)

b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)

\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)

\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)

=> P>1/2

13 tháng 5 2021

Ta có: \(\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)=9\)

\(\Leftrightarrow\frac{\left(a-\sqrt{a^2+9}\right)\left(a+\sqrt{a^2+9}\right)\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Leftrightarrow\frac{-9\left(b+\sqrt{b^2+9}\right)}{a-\sqrt{a^2+9}}=9\)

\(\Rightarrow b+\sqrt{b^2+9}=\sqrt{a^2+9}-a\)

Tương tự chỉ ra được: \(a+\sqrt{a^2+9}=\sqrt{b^2+9}-b\)

Cộng vế 2 PT trên lại ta được:

\(a+b+\sqrt{a^2+9}+\sqrt{b^2+9}=\sqrt{a^2+9}+\sqrt{b^2+9}-a-b\)

\(\Leftrightarrow2\left(a+b\right)=0\Rightarrow a=-b\)

Thay vào M ta được:

\(M=2a^4-a^4-6a^2+8a^2-10a+2a+2026\)

\(M=a^4+2a^2-8a+2026\)

\(M=\left(a^4+2a^2-8a+5\right)+2021\)

\(M=\left[\left(a^4-a^3\right)+\left(a^3-a^2\right)+\left(3a^2-3a\right)-\left(5a-5\right)\right]+2021\)

\(M=\left(a-1\right)\left(a^3+a^2+3a-5\right)+2021\)

\(M=\left(a-1\right)^2\left(a^2+2a+5\right)+2021\)\(\ge0+2021=2021\)

Dấu "=" xảy ra khi: a = 1 => b = -1

Vậy Min(M) = 2021 khi a = 1 và b = -1

13 tháng 5 2021

a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)

\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )

15 tháng 5 2021

Câu a:  Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m

    ⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m

Câu b:

Để phương trình có 2 nghiệm nguyên thì  \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)  

17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)