K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

A B C D E x O

A. CM BECD nội tiếp

Tứ giác BECD có \(\widehat{BEC}=90^o=\widehat{BDC}\left(gt\right)\)và cùng nhìn cạnh BC

=> BEDC nội tiếp (đpcm)

B. CM Ax là tiếp tuyến của (O)

Trên nửa mp bờ AB không chứa điểm C, kẻ tiếp tuyến Ay của (O). Ta cần cm Ay trùng với Ax.

Ta có Ax là tiếp tuyến của (O) (cách vẽ)

=> \(\widehat{yAB}=\widehat{ACB}\) ( góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn \(\widebat{AB}\)của đường tròn (O)

mà \(\widehat{ACB}=\widehat{AED}\)( góc ngoài bằng góc trong đối điện của BEDC nội tiếp )

=> \(\widehat{yAB}=\widehat{AED}\)và 2 góc này ở vị trí so le trong

=> Ay//ED

Mà Ax//ED (gt)

=> Ay trùng Ax

=> Ax là tiếp tuyến của (O)

22 tháng 5 2021

Giúp MK vs

 1 Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BCa)CM Tg ABOC nội tiếpb)CM OA là đường trung trực của BCc)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng DCM:d)Tính số đo góc HEC2 . Cho đường tròn tâm (O;R) có dây BC cố định (BC khác 2R) và điểm A di động trên cung lớn BC...
Đọc tiếp

 

1 Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BC
a)CM Tg ABOC nội tiếp
b)CM OA là đường trung trực của BC
c)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng D
CM:
d)Tính số đo góc HEC

2 . 

Cho đường tròn tâm (O;R) có dây BC cố định (BC khác 2R) và điểm A di động trên cung lớn BC ( A không trùng B,C và điểm chính giữa cung lớn BC ). Gọi H là hình chiếu của A trên BC; E và F lần lượt là hình chiếu của B,C trên đường kính AD của đường tròn (O;R)

a,CMR:các tứ giác ABHE và AHFC nội tiếp

b,Giả sử BC=R√3,EF=R/√3.Tính số đo ^BAC và tỷ số diện tích △ ABC và △ HÈ

c,CMR:khi điểm A di động thì tâm đường tròn ngoại tiếp △ HÈ là một điểm cố định

3
5 tháng 4 2020

Bài 2

a) Ta có \(\widehat{AEB}=\widehat{AHB}=90^o\). Tứ giác ABHE nội tiếp

=> \(\widehat{EHC}=\widehat{ABA'}=\widehat{BCA'}\)

=> HE//CA'

Vì CA' _|_ AC => HE _|_ AC

c) Gọi M là trung điểm của AB, N là trung điểm BC

Đường tròn ngoại tiếp ABHE có tâm là M nên M nằm trên đường trung trực của HE

Do HE _|_ AC nên trung trực của HE song song với AC và chứa đường trung bình của tam giác ABC

Do đó trung điểm N của BC nằm trên trung trự của HE

Mặt khác E,F là chân đường vuông góc của B và C hạ xuông AA' nên trung trực của EF đi qua trung điểm N của BC

Vậy N là tâm của đường tròn ngoại tiếp tam giác HEF là 1 điểm cố định cho BC cố định

5 tháng 4 2020

Bài 1

bổ sung câu c bài hỏi .là : CM \(\frac{DE}{BE}=\frac{BD}{BA}\)

bài làm

a) ta có . tam giác ACO zuông tại C , Tam giác ABO zuông tại B

nên C , B lần lượt nhìn AO zới 1 góc =90 độ

=> ABCO nội tiếp 

b) ta có tam giác ABC cân tại A do AB=AC

mà AH là đường cao

nên AH cx là đường trung tuyến

=> CH = HB

=> AO là đường trung trực của CB

c) ta có BD là đường kính của O 

nên góc BED = 90 độ

xét 2 tam giác zuông BED zà ABD có

góc BAD = góc BDA ( cùng nhìn \(\widebat{BE}\)

BD chung

=> tam giác BED = tam giác DBA 

=> \(\frac{DE}{BE}=\frac{BD}{BA}\)

a: Xét tứ giác OAIC có 

\(\widehat{OAI}+\widehat{OCI}=180^0\)

Do đó: OAIC là tứ giác nội tiếp

Xét (O) có

IC là tiếp tuyến

IA là tiếp tuyến

Do đó: OI là tia phân giác của góc COA

Ta có: ΔOAC cân tại O

mà OI là đường phân giác

nên OI⊥AC(1)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Suy ra: CA⊥CB(2)

Từ (1) và (2) suy ra CB//OI

Câu b đề thiếu rồi bạn

Câu c đề sai bởi vì ΔACB vuông tại C rồi nên nếu đường cao AH thì H trùng với C rồi bạn

12 tháng 5 2019

a, b, c HS tự làm

d, Gợi ý: G' ÎOI mà  I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)

20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).