Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Người hay giúp bạn khác trả lời bài tập sẽ trở thành học sinh giỏi. Người hay hỏi bài thì không. Còn bạn thì sao?
a) ta có : AB \(\perp\)CD
=> HC=HD
mà HA= HO ( H là trung điểm OA)
=> tứ giác ACOB là hình bình hành
trong hbh ACOB có AO \(\perp\)CD(gt)
=> ACOB là hình thoi
b)
Ta có: ΔOCD cân tại O
mà OH là đường cao
nên OH là phân giác của góc COD
=>OM là phân giác của góc COD
=>\(\widehat{COM}=\widehat{DOM}\)
Xét ΔOCM và ΔODM có
OC=OD
\(\widehat{COM}=\widehat{DOM}\)
OM chung
Do đó: ΔOCM=ΔODM
=>\(\widehat{OCM}=\widehat{ODM}\)
mà \(\widehat{ODM}=90^0\)
nên \(\widehat{OCM}=90^0\)
=>MC là tiếp tuyến của (O)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD
a) Tứ giác ACMD là hình thoi vì có 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b) OI là đường trung trực của tam giác cân COD nên góc COI = góc DOI.
=> \(\Delta OCI=\Delta ODI\)(c.g.c) => góc ODI = góc OCI = 90o, do đó ID cắt OD.
Vậy ID là tiếp tuyến của đường tròn (O).
a) Ta có CD vuông góc với AM tại trung điểm (1)
=> OA vuông góc với CD tại trung điểm
=>> AM vuông góc với CD tại trung điểm (2)
Từ (1), (2)=> ACMD là hình thoi
Ai giúp mình với
a: Xét tứ giác ACOD có
H là trung điểm của CD
H là trung điểm của OA
Do đó: ACOD là hình bình hành
mà OC=OD
nên ACOD là hình thoi