K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a: Xét (O) có

DB là tiếp tuyến

DC là tiếp tuyến

Do đó: DB=DC

hay D nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD⊥BC(3)

Xét (O) có 

ΔACB nội tiếp đường tròn

AB là đường kính

Do đó: ΔACB vuông tại C

hay AC⊥CB(4)

Từ (3) và (4) suy ra AC//OD

30 tháng 4 2020

mình không vẽ hình nha

30 tháng 4 2020

a) vì AD là tia phân giác \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC

\(\Rightarrow OD\perp BC\)

Mà \(DE\perp OD\)

\(\Rightarrow BC//DE\)

b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)

\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)

suy ra tứ giác ACIK nội tiếp 

c) OD cắt BC tại H

Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)

Xét \(\Delta OHC\)vuông tại H có :

\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\widehat{HOC}=60^o\)

\(\Rightarrow\widehat{BOC}=120^o\)

\(\Rightarrow\widebat{BC}=120^o\)

P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha. 

22 tháng 2 2021

có sđ AB = sđ BC = sđ CD 

mà BIC = 1/2 ( sđ AD - sđ BC ) =1/2 ( sđ BD - sđ AB -sđ BC )

BKD = 1/2 ( sđ BD - sđ BC-sđ CD )

nên BIC=BKD

b,KBC = CDB ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung CD)

mà CDB = CBD ( BC = CD )

nên KBC = CBD => BC là tia pg của KBD

23 tháng 2 2021

A) 

Vì góc BIC có đỉnh nằm ngoài đường tròn
nên: góc BIC = \(\dfrac{sđAD-sđBC}{2}\) 
Mà: sđAD = \(\dfrac{sđBD+sđAB}{2}\) ; sđBC = sđ AB = sđCD
=> góc BIC = \(\dfrac{sđBD+sđAB-sđAB}{2}\) = \(\dfrac{sđBD}{2}\) (1)
Ta có: góc BKD = \(\dfrac{sđBD}{2}\) (2)
từ (1) và (2) => góc BIC = góc BKD

B)

Vì góc KBC và góc BDC cùng chắn cung BC 
=> góc KBC = góc BDC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )
Ta có: sđBC = sđCD (gt)
nên: góc BDC = góc DBC (hai góc nội tiếp chắn hai cung bằng nhau)
Vậy góc KBC = góc DBC (cùng bằng góc BDC)
hay: BC là tia phân giác của góc DBK